| Home > Publications database > Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine > print |
| 001 | 462564 | ||
| 005 | 20250724175611.0 | ||
| 024 | 7 | _ | |a 10.1038/s41467-021-23932-0 |2 doi |
| 024 | 7 | _ | |a 10.3204/PUBDB-2021-03466 |2 datacite_doi |
| 024 | 7 | _ | |a altmetric:107403946 |2 altmetric |
| 024 | 7 | _ | |a pmid:34112799 |2 pmid |
| 024 | 7 | _ | |a WOS:000663750600005 |2 WOS |
| 024 | 7 | _ | |a openalex:W3172860729 |2 openalex |
| 037 | _ | _ | |a PUBDB-2021-03466 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 500 |
| 100 | 1 | _ | |a Mieczkowski, Mateusz |0 P:(DE-HGF)0 |b 0 |e First author |
| 245 | _ | _ | |a Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine |
| 260 | _ | _ | |a [London] |c 2021 |b Nature Publishing Group UK |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1632484507_16108 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Fluorogenic RNA aptamers are synthetic functional RNAs that specifically bind and activate conditional fluorophores. The Chili RNA aptamer mimics large Stokes shift fluorescent proteins and exhibits high affinity for 3,5-dimethoxy-4-hydroxybenzylidene imidazolone (DMHBI) derivatives to elicit green or red fluorescence emission. Here, we elucidate the structural and mechanistic basis of fluorescence activation by crystallography and time-resolved optical spectroscopy. Two co-crystal structures of the Chili RNA with positively charged DMHBO+ and DMHBI+ ligands revealed a G-quadruplex and a trans-sugar-sugar edge G:G base pair that immobilize the ligand by π-π stacking. A Watson-Crick G:C base pair in the fluorophore binding site establishes a short hydrogen bond between the N7 of guanine and the phenolic OH of the ligand. Ultrafast excited state proton transfer (ESPT) from the neutral chromophore to the RNA was found with a time constant of 130 fs and revealed the mode of action of the large Stokes shift fluorogenic RNA aptamer. |
| 536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 0 |
| 536 | _ | _ | |a FS-Proposal: I-20190778 (I-20190778) |0 G:(DE-H253)I-20190778 |c I-20190778 |x 1 |
| 536 | _ | _ | |a FS-Proposal: I-20200799 (I-20200799) |0 G:(DE-H253)I-20200799 |c I-20200799 |x 2 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
| 693 | _ | _ | |a PETRA III |f PETRA Beamline P11 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P11-20150101 |6 EXP:(DE-H253)P-P11-20150101 |x 0 |
| 700 | 1 | _ | |a Steinmetzger, Christian |0 P:(DE-HGF)0 |b 1 |e First author |
| 700 | 1 | _ | |a Bessi, Irene |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Lenz, Ann-Kathrin |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Schmiedel, Alexander |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Holzapfel, Marco |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Lambert, Christoph |0 0000-0002-9652-9165 |b 6 |e Corresponding author |
| 700 | 1 | _ | |a Pena, Vladimir |0 P:(DE-H253)PIP1026036 |b 7 |e Corresponding author |
| 700 | 1 | _ | |a Hoebartner, Claudia |0 P:(DE-H253)PIP1089902 |b 8 |e Corresponding author |
| 773 | _ | _ | |a 10.1038/s41467-021-23932-0 |g Vol. 12, no. 1, p. 3549 |0 PERI:(DE-600)2553671-0 |n 1 |p 3549 |t Nature Communications |v 12 |y 2021 |x 2041-1723 |
| 856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/462564/files/s41467-021-23932-0.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/462564/files/s41467-021-23932-0.pdf?subformat=pdfa |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:462564 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-H253)PIP1026036 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1089902 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-02-02 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-02 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-02 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-02-02 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2019 |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-02-02 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-02 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NAT COMMUN : 2019 |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-02 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-02-02 |
| 920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
| 920 | 1 | _ | |0 I:(DE-H253)UWuerzburg-20140802 |k UWuerzburg |l Universität Würzburg |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
| 980 | _ | _ | |a I:(DE-H253)UWuerzburg-20140802 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|