000461913 001__ 461913
000461913 005__ 20250716150723.0
000461913 0247_ $$2doi$$a10.1038/s41550-021-01343-x
000461913 0247_ $$2inspire$$ainspire:1796186
000461913 0247_ $$2altmetric$$aaltmetric:102637189
000461913 0247_ $$2arXiv$$aarXiv:2005.06097
000461913 0247_ $$2WOS$$aWOS:000628085700001
000461913 0247_ $$2openalex$$aopenalex:W3137070649
000461913 037__ $$aPUBDB-2021-03170
000461913 041__ $$aEnglish
000461913 082__ $$a520
000461913 088__ $$2arXiv$$aarXiv:2005.06097
000461913 088__ $$2DESY$$aDESY-20-088
000461913 1001_ $$0P:(DE-H253)PIP1021242$$aWinter, Walter$$b0$$eCorresponding author
000461913 245__ $$aPublisher Correction: A concordance scenario for the observed neutrino from a tidal disruption event
000461913 260__ $$aLondon$$bNature Publishing Group$$c2021
000461913 3367_ $$2DRIVER$$aarticle
000461913 3367_ $$2DataCite$$aOutput Types/Journal article
000461913 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641909474_15121
000461913 3367_ $$2BibTeX$$aARTICLE
000461913 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000461913 3367_ $$00$$2EndNote$$aJournal Article
000461913 500__ $$aWaiting for fulltext
000461913 520__ $$aDuring a tidal disruption event, a star is torn apart by the tidal forces of a supermassive black hole, with about 50% of the star’s mass eventually accreted by the black hole. The resulting flare can, in extreme cases of super-Eddington mass accretion, result in a relativistic jet1,2,3,4. While tidal disruption events have been theoretically proposed as sources of high-energy cosmic rays5,6 and neutrinos7,8,9,10,11,12,13,14, stacking searches indicate that their contribution to the diffuse extragalactic neutrino flux is very low15. However, a recent association of a track-like astrophysical neutrino (IceCube-191001A16) with a tidal disruption event (AT2019dsg17) indicates that some tidal disruption events can accelerate cosmic rays to petaelectronvolt energies. Here we introduce a phenomenological concordance scenario with a relativistic jet to explain this association: an expanding cocoon progressively obscures the X-rays emitted by the accretion disk, while at the same time providing a sufficiently intense external target of backscattered X-rays for the production of neutrinos via proton–photon interactions. We also reproduce the delay (relative to the peak) of the neutrino emission by scaling the production radius with the black-body radius. Our energetics and assumptions for the jet and the cocoon are compatible with expectations from numerical simulations of tidal disruption events.
000461913 536__ $$0G:(DE-HGF)POF4-613$$a613 - Matter and Radiation from the Universe (POF4-613)$$cPOF4-613$$fPOF IV$$x0
000461913 536__ $$0G:(EU-Grant)646623$$aNEUCOS - Neutrinos and the origin of the cosmic rays (646623)$$c646623$$fERC-2014-CoG$$x1
000461913 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000461913 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000461913 7001_ $$0P:(DE-H253)PIP1028564$$aLunardini, Cecilia$$b1
000461913 773__ $$0PERI:(DE-600)2879712-7$$a10.1038/s41550-021-01343-x$$gVol. 5, no. 6, p. 621 - 621$$n6$$p621$$tNature astronomy$$v5$$x2397-3366$$y2021
000461913 7870_ $$0PUBDB-2021-03165$$aWinter, Walter et.al.$$dLondon : Nature Publishing Group, 2021$$iHasPart$$rarXiv:2005.06097 ; DESY-20-088$$tA concordance scenario for the observed neutrino from a tidal disruption event
000461913 8564_ $$uhttps://bib-pubdb1.desy.de/record/461913/files/s41550-021-01343-x.pdf$$yRestricted
000461913 8564_ $$uhttps://bib-pubdb1.desy.de/record/461913/files/s41550-021-01343-x.pdf?subformat=pdfa$$xpdfa$$yRestricted
000461913 909CO $$ooai:bib-pubdb1.desy.de:461913$$pec_fundedresources$$pVDB$$popenaire
000461913 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1021242$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000461913 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1028564$$aExternal Institute$$b1$$kExtern
000461913 9131_ $$0G:(DE-HGF)POF4-613$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vMatter and Radiation from the Universe$$x0
000461913 9132_ $$0G:(DE-HGF)POF4-613$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vMatter and Radiation from the Universe$$x0
000461913 9141_ $$y2021
000461913 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT ASTRON : 2019$$d2021-02-02
000461913 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000461913 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000461913 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000461913 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000461913 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000461913 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000461913 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000461913 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT ASTRON : 2019$$d2021-02-02
000461913 9201_ $$0I:(DE-H253)Z_THAT-20210408$$kZ_THAT$$lTheoretische Astroteilchenphysik$$x0
000461913 980__ $$ajournal
000461913 980__ $$aVDB
000461913 980__ $$aI:(DE-H253)Z_THAT-20210408
000461913 980__ $$aUNRESTRICTED