| Home > Publications database > A concordance scenario for the observed neutrino from a tidal disruption event > print |
| 001 | 461908 | ||
| 005 | 20250716150206.0 | ||
| 024 | 7 | _ | |a Winter:2020ptf |2 INSPIRETeX |
| 024 | 7 | _ | |a inspire:1796186 |2 inspire |
| 024 | 7 | _ | |a arXiv:2005.06097 |2 arXiv |
| 024 | 7 | _ | |a 10.1038/s41550-021-01305-3 |2 doi |
| 024 | 7 | _ | |a 10.3204/PUBDB-2021-03165 |2 datacite_doi |
| 024 | 7 | _ | |a altmetric:100639201 |2 altmetric |
| 024 | 7 | _ | |a WOS:000620431500006 |2 WOS |
| 024 | 7 | _ | |2 openalex |a openalex:W3198669911 |
| 037 | _ | _ | |a PUBDB-2021-03165 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 520 |
| 088 | _ | _ | |a arXiv:2005.06097 |2 arXiv |
| 088 | _ | _ | |a DESY-20-088 |2 DESY |
| 100 | 1 | _ | |a Winter, Walter |0 P:(DE-H253)PIP1021242 |b 0 |e Corresponding author |
| 245 | _ | _ | |a A concordance scenario for the observed neutrino from a tidal disruption event |
| 260 | _ | _ | |a London |c 2021 |b Nature Publishing Group |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1628505513_25601 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a During a tidal disruption event, a star is torn apart by the tidal forces of a supermassive black hole, with about 50% of the star’s mass eventually accreted by the black hole. The resulting flare can, in extreme cases of super-Eddington mass accretion, result in a relativistic jet1,2,3,4. While tidal disruption events have been theoretically proposed as sources of high-energy cosmic rays5,6 and neutrinos7,8,9,10,11,12,13,14, stacking searches indicate that their contribution to the diffuse extragalactic neutrino flux is very low15. However, a recent association of a track-like astrophysical neutrino (IceCube-191001A16) with a tidal disruption event (AT2019dsg17) indicates that some tidal disruption events can accelerate cosmic rays to petaelectronvolt energies. Here we introduce a phenomenological concordance scenario with a relativistic jet to explain this association: an expanding cocoon progressively obscures the X-rays emitted by the accretion disk, while at the same time providing a sufficiently intense external target of backscattered X-rays for the production of neutrinos via proton–photon interactions. We also reproduce the delay (relative to the peak) of the neutrino emission by scaling the production radius with the black-body radius. Our energetics and assumptions for the jet and the cocoon are compatible with expectations from numerical simulations of tidal disruption events. |
| 536 | _ | _ | |a NEUCOS - Neutrinos and the origin of the cosmic rays (646623) |0 G:(EU-Grant)646623 |c 646623 |f ERC-2014-CoG |x 0 |
| 536 | _ | _ | |a 613 - Matter and Radiation from the Universe (POF4-613) |0 G:(DE-HGF)POF4-613 |c POF4-613 |f POF IV |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de |
| 650 | _ | 7 | |a neutrino: production |2 INSPIRE |
| 650 | _ | 7 | |a X-ray: emission |2 INSPIRE |
| 650 | _ | 7 | |a jet: relativistic |2 INSPIRE |
| 650 | _ | 7 | |a numerical calculations |2 INSPIRE |
| 650 | _ | 7 | |a backscatter |2 INSPIRE |
| 650 | _ | 7 | |a black body |2 INSPIRE |
| 650 | _ | 7 | |a accretion |2 INSPIRE |
| 650 | _ | 7 | |a scaling |2 INSPIRE |
| 650 | _ | 7 | |a photon pi |2 INSPIRE |
| 650 | _ | 7 | |a IceCube |2 INSPIRE |
| 693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
| 700 | 1 | _ | |a Lunardini, Cecilia |0 P:(DE-H253)PIP1028564 |b 1 |
| 773 | _ | _ | |a 10.1038/s41550-021-01305-3 |g Vol. 5, no. 5, p. 621 - 621 |0 PERI:(DE-600)2879712-7 |p 472 - 477 |t Nature astronomy |v 5 |y 2021 |x 2397-3366 |
| 787 | 0 | _ | |a Winter, Walter et.al. |d 2020 |i IsParent |0 PUBDB-2020-03342 |r arXiv:2005.06097 ; DESY-20-088 |t A concordance scenario for the observation of a neutrino from the Tidal Disruption Event AT2019dsg |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/461908/files/NA5%282021%29472.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/461908/files/document%2813%29.pdf |y Published on 2021-03-12. Available in OpenAccess from 2021-09-12. |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/461908/files/NA5%282021%29472.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/461908/files/document%2813%29.pdf?subformat=pdfa |x pdfa |y Published on 2021-03-12. Available in OpenAccess from 2021-09-12. |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:461908 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1021242 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1028564 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and the Universe |1 G:(DE-HGF)POF4-610 |0 G:(DE-HGF)POF4-613 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Matter and Radiation from the Universe |x 0 |
| 913 | 2 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and the Universe |1 G:(DE-HGF)POF4-610 |0 G:(DE-HGF)POF4-613 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Matter and Radiation from the Universe |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-02 |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT ASTRON : 2019 |d 2021-02-02 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NAT ASTRON : 2019 |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-02 |
| 920 | 1 | _ | |0 I:(DE-H253)Z_THAT-20210408 |k Z_THAT |l Theoretische Astroteilchenphysik |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-H253)Z_THAT-20210408 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|