001     461764
005     20250729163432.0
024 7 _ |a 10.1002/cphc.201900480
|2 doi
024 7 _ |a 1439-4235
|2 ISSN
024 7 _ |a 1439-7641
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2021-03059
|2 datacite_doi
024 7 _ |a altmetric:63961819
|2 altmetric
024 7 _ |a pmid:31265754
|2 pmid
024 7 _ |a WOS:000477441000001
|2 WOS
024 7 _ |a openalex:W2956081995
|2 openalex
037 _ _ |a PUBDB-2021-03059
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Pawlowska, Dorota
|0 P:(DE-H253)PIP1015731
|b 0
245 _ _ |a The Impact of Alkyl‐Chain Purity on Lipid‐Based Nucleic Acid Delivery Systems – Is the Utilization of Lipid Components with Technical Grade Justified?
260 _ _ |a Weinheim
|c 2019
|b Wiley-VCH Verl.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1627386218_29049
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The physicochemical properties and transfection efficacies of two samples of a cationic lipid have been investigated and compared in 2D (monolayers at the air/liquid interface) and 3D (aqueous bulk dispersions) model systems using different techniques. The samples differ only in their chain composition due to the purity of the oleylamine (chain precursor). Lipid 8 (using the oleylamine of technical grade for cost-efficient synthesis) shows lateral phase separation in the Langmuir layers. However, the amount of attached DNA, determined by IRRAS, is for both samples the same. In 3D systems, lipid 8 p forms cubic phases, which disappear after addition of DNA. At physiological temperatures, both lipids (alone and in mixture with cholesterol) assemble to lamellar aggregates and exhibit comparable DNA delivery efficiency. This study demonstrates that non-lamellar structures are not compulsory for high transfection rates. The results legitimate the utilization of oleyl chains of technical grade in the synthesis of cationic transfection lipids
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a DORIS III
|f DORIS Beamline A2
|1 EXP:(DE-H253)DORISIII-20150101
|0 EXP:(DE-H253)D-A2-20150101
|6 EXP:(DE-H253)D-A2-20150101
|x 0
693 _ _ |a DORIS III
|f DORIS Beamline BW1
|1 EXP:(DE-H253)DORISIII-20150101
|0 EXP:(DE-H253)D-BW1-20150101
|6 EXP:(DE-H253)D-BW1-20150101
|x 1
700 1 _ |a Janich, Christopher
|0 P:(DE-H253)PIP1020635
|b 1
700 1 _ |a Langner, Andreas
|b 2
700 1 _ |a Dobner, Bodo
|0 P:(DE-H253)PIP1024244
|b 3
700 1 _ |a Wölk, Christian
|0 P:(DE-H253)PIP1020591
|b 4
|e Corresponding author
700 1 _ |a Brezesinski, Gerald
|0 P:(DE-H253)PIP1008088
|b 5
773 _ _ |a 10.1002/cphc.201900480
|g Vol. 20, no. 16, p. 2110 - 2121
|0 PERI:(DE-600)2025223-7
|n 16
|p 2110 - 2121
|t ChemPhysChem
|v 20
|y 2019
|x 1439-7641
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/461764/files/cphc.201900480.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/461764/files/cphc.201900480.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:461764
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1015731
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1020635
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1024244
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1020591
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1008088
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMPHYSCHEM : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 1 _ |0 I:(DE-H253)FS-PS-20131107
|k FS-PS
|l FS-Photon Science
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-PS-20131107
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21