001     459716
005     20250716150535.0
024 7 _ |a 10.1107/S2059798321003855
|2 doi
024 7 _ |a 0907-4449
|2 ISSN
024 7 _ |a 1399-0047
|2 ISSN
024 7 _ |a 2059-7983
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2021-02689
|2 datacite_doi
024 7 _ |a altmetric:106131287
|2 altmetric
024 7 _ |a pmid:34076595
|2 pmid
024 7 _ |a WOS:000659143800009
|2 WOS
024 7 _ |2 openalex
|a openalex:W3163232381
037 _ _ |a PUBDB-2021-02689
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Norton-Baker, Brenna
|0 P:(DE-H253)PIP1090270
|b 0
245 _ _ |a A simple vapor-diffusion method enables protein crystallization inside the HARE serial crystallography chip
260 _ _ |a Bognor Regis
|c 2021
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1718024558_2075108
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Fixed-target serial crystallography has become an important method for the study of protein structure and dynamics at synchrotrons and X-ray free-electron lasers. However, sample homogeneity, consumption and the physical stress on samples remain major challenges for these high-throughput experiments, which depend on high-quality protein microcrystals. The batch crystallization procedures that are typically applied require time- and sample-intensive screening and optimization. Here, a simple protein crystallization method inside the features of the HARE serial crystallography chips is reported that circumvents batch crystallization and allows the direct transfer of canonical vapor-diffusion conditions to in-chip crystallization. Based on conventional hanging-drop vapor-diffusion experiments, the crystallization solution is distributed into the wells of the HARE chip and equilibrated against a reservoir with mother liquor. Using this simple method, high-quality microcrystals were generated with sufficient density for the structure determination of four different proteins. A new protein variant was crystallized using the protein concentrations encountered during canonical crystallization experiments, enabling structure determination from ∼55 µg of protein. Additionally, structure determination from intracellular crystals grown in insect cells cultured directly in the features of the HARE chips is demonstrated. In cellulo crystallization represents a comparatively un­explored space in crystallization, especially for proteins that are resistant to crystallization using conventional techniques, and eliminates any need for laborious protein purification. This in-chip technique avoids harvesting the sensitive crystals or any further physical handling of the crystal-containing cells. These proof-of-principle experiments indicate the potential of this method to become a simple alternative to batch crystallization approaches and also as a convenient extension to canonical crystallization screens.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 1
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 2
536 _ _ |a DFG project 194651731 - EXC 1074: Hamburger Zentrum für ultraschnelle Beobachtung (CUI): Struktur, Dynamik und Kontrolle von Materie auf atomarer Skala (194651731)
|0 G:(GEPRIS)194651731
|c 194651731
|x 3
536 _ _ |a DFG project 390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994)
|0 G:(GEPRIS)390715994
|c 390715994
|x 4
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P14
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P14-20150101
|6 EXP:(DE-H253)P-P14-20150101
|x 0
700 1 _ |a Mehrabi, Pedram
|0 P:(DE-H253)PIP1029103
|b 1
700 1 _ |a Boger, Juliane
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schoenherr, Robert Frank
|0 P:(DE-H253)PIP1030001
|b 3
700 1 _ |a von Stetten, David
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schikora, Hendrik
|0 P:(DE-H253)PIP1029493
|b 5
700 1 _ |a Kwok, Ashley O.
|0 0000-0001-9361-4113
|b 6
700 1 _ |a Martin, Rachel W.
|0 P:(DE-H253)PIP1089504
|b 7
700 1 _ |a Miller, R. J. Dwayne
|0 P:(DE-H253)PIP1012317
|b 8
700 1 _ |a Redecke, Lars
|0 P:(DE-H253)PIP1008743
|b 9
700 1 _ |a Schulz, Eike C.
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.1107/S2059798321003855
|g Vol. 77, no. 6, p. 820 - 834
|0 PERI:(DE-600)2968623-4
|n 6
|p 820 - 834
|t Acta crystallographica / Section D
|v 77
|y 2021
|x 2059-7983
856 4 _ |u https://scripts.iucr.org/cgi-bin/paper?S2059798321003855
856 4 _ |u https://bib-pubdb1.desy.de/record/459716/files/A%20simple%20vapor%20diffusion%20method%20enables%20protein%20crystallization%20inside%20the%20HARE%20serial%20crystallography%20chip.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/459716/files/A%20simple%20vapor%20diffusion%20method%20enables%20protein%20crystallization%20inside%20the%20HARE%20serial%20crystallography%20chip.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:459716
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 0
|6 P:(DE-H253)PIP1090270
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 0
|6 P:(DE-H253)PIP1090270
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 0
|6 P:(DE-H253)PIP1090270
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 1
|6 P:(DE-H253)PIP1029103
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 1
|6 P:(DE-H253)PIP1029103
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 1
|6 P:(DE-H253)PIP1029103
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1029103
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1030001
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1030001
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 5
|6 P:(DE-H253)PIP1029493
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 5
|6 P:(DE-H253)PIP1029493
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1089504
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 8
|6 P:(DE-H253)PIP1012317
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 8
|6 P:(DE-H253)PIP1012317
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1008743
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1008743
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 2
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA CRYSTALLOGR D : 2019
|d 2021-05-04
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-05-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-05-04
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACTA CRYSTALLOGR D : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 1 _ |0 I:(DE-H253)FS-PS-20131107
|k FS-PS
|l FS-Photon Science
|x 0
920 1 _ |0 I:(DE-H253)EMBL-User-20120814
|k EMBL-User
|l EMBL-User
|x 1
920 1 _ |0 I:(DE-H253)U_L__beck-20211012
|k U Lübeck
|l Universität zu Lübeck
|x 2
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)FS-PS-20131107
980 _ _ |a I:(DE-H253)EMBL-User-20120814
980 _ _ |a I:(DE-H253)U_L__beck-20211012
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21