001     459509
005     20250715175711.0
024 7 _ |a 10.1093/mnras/stac433
|2 doi
024 7 _ |a altmetric:109269516
|2 altmetric
024 7 _ |a arXiv:2107.04612
|2 arXiv
024 7 _ |a WOS:000766832600012
|2 WOS
024 7 _ |2 openalex
|a openalex:W4220958209
037 _ _ |a PUBDB-2021-02589
041 _ _ |a English
082 _ _ |a 520
088 _ _ |a arXiv:2107.04612
|2 arXiv
088 _ _ |a DESY-21-103
|2 DESY
100 1 _ |a Rudolph, Annika
|0 P:(DE-H253)PIP1032309
|b 0
|e Corresponding author
245 _ _ |a Multi-wavelength radiation models for low-luminosity GRBs, and the implications for UHECRs
260 _ _ |a Oxford
|c 2022
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1647438728_28787
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We study the prompt phase of low-luminosity Gamma-Ray Bursts (LL-GRBs) as potential source of very-high-energy (VHE) gamma rays and ultra-high-energy cosmic rays (UHECRs).We model the spectral energy distribution of three representative examples (with observed properties similar to GRBs 980425, 100316D and 120714B) self-consistently in a leptonic synchrotron self-Compton (SSC) scenario using the internal shock model for the relativistic outflow. To investigate the conditions under which inverse Compton radiation may lead to a peak in the GeV-TeV range potentially observable in Imaging Atmospheric Cherenkov Telescopes (IACTs), we vary the fraction of the energy budget supplying the magnetic field. As a second step, we determine the maximal energies achievable for UHECR nuclei. Assuming LL-GRBs to power the observed UHECR flux, we derive constraints on the baryonic loading and typical GRB duration by explicitly calculating the contribution of LL-GRBs to the diffuse extragalactic gamma-ray background. We find that LL-GRBs are potential targets for multi-mavelength studies and may be in reach of current/ future IACTs and optical/ UV instruments.For comparable sub-MeV emission and similar jet properties, the multi-wavelength predictions show a strong dependence on the magnetic field: weak (strong) magnetic fields induce high (low) fluxes in the VHE regime and low (high) fluxes in the optical. However, VHE emission might be suppressed by $\gamma \gamma $-absorption close to the source (especially for high magnetic fields) or interactions with the extragalactic background light for redshifts $z > 0.1$.For UHECRs, we find that the maximal energies of iron nuclei (protons) can be as high as $\simeq 10^{11}$~GeV ($10^{10}$~GeV) if the magnetic energy density is large (where we predict a weak VHE component). These high energies are possible by decoupling the production regions of UHECR and gamma-rays in our multi-zone model. Finally, we find basic consistency with the energy budget needed to accommodate the UHECR origin from LL-GRBs.
536 _ _ |a 613 - Matter and Radiation from the Universe (POF4-613)
|0 G:(DE-HGF)POF4-613
|c POF4-613
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
650 _ 7 |a cosmic radiation: UHE
|2 INSPIRE
650 _ 7 |a cosmic radiation: spectrum
|2 INSPIRE
650 _ 7 |a gamma ray: burst
|2 INSPIRE
650 _ 7 |a energy: internal
|2 INSPIRE
650 _ 7 |a iron: nucleus
|2 INSPIRE
650 _ 7 |a gamma ray: background
|2 INSPIRE
650 _ 7 |a energy: high
|2 INSPIRE
650 _ 7 |a magnetic field: high
|2 INSPIRE
650 _ 7 |a energy: density
|2 INSPIRE
650 _ 7 |a energy: magnetic
|2 INSPIRE
650 _ 7 |a VHE
|2 INSPIRE
650 _ 7 |a acceleration
|2 INSPIRE
650 _ 7 |a optical
|2 INSPIRE
650 _ 7 |a shock waves
|2 INSPIRE
650 _ 7 |a messenger
|2 INSPIRE
650 _ 7 |a spectral
|2 INSPIRE
650 _ 7 |a energy spectrum
|2 INSPIRE
650 _ 7 |a synchrotron
|2 INSPIRE
650 _ 7 |a decoupling
|2 INSPIRE
650 _ 7 |a redshift
|2 INSPIRE
650 _ 7 |a Cherenkov counter: atmosphere
|2 INSPIRE
650 _ 7 |a imaging
|2 INSPIRE
650 _ 7 |a suppression
|2 INSPIRE
693 _ _ |0 EXP:(DE-H253)ULTRASAT-20211201
|5 EXP:(DE-H253)ULTRASAT-20211201
|e Ultraviolet Transient Astronomy Satellite
|x 0
693 _ _ |0 EXP:(DE-H253)CTA-20150101
|5 EXP:(DE-H253)CTA-20150101
|e Cherenkov Telescope Array
|x 1
700 1 _ |a Bosnjak, Zeljka
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Palladino, Andrea
|0 P:(DE-H253)PIP1082506
|b 2
700 1 _ |a Sadeh, Iftach
|0 P:(DE-H253)PIP1006066
|b 3
700 1 _ |a Winter, Walter
|0 P:(DE-H253)PIP1021242
|b 4
773 _ _ |a 10.1093/mnras/stac433
|g Vol. 511, no. 4, p. 5823 - 5842
|0 PERI:(DE-600)2016084-7
|n 4
|p 5823 – 5842
|t Monthly notices of the Royal Astronomical Society
|v 511
|y 2022
|x 0035-8711
856 4 _ |u https://doi.org/10.1093/mnras/stac433
856 4 _ |u https://bib-pubdb1.desy.de/record/459509/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/459509/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/459509/files/stac433.2.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/459509/files/stac433.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/459509/files/stac433.2.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/459509/files/stac433.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:bib-pubdb1.desy.de:459509
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1032309
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1082506
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1006066
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1021242
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-613
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter and Radiation from the Universe
|x 0
914 1 _ |y 2022
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MON NOT R ASTRON SOC : 2019
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-04
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-04
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MON NOT R ASTRON SOC : 2019
|d 2021-02-04
920 1 _ |0 I:(DE-H253)Z_GA-20210408
|k Z_GA
|l Gammaastronomie
|x 0
920 1 _ |0 I:(DE-H253)Z_THAT-20210408
|k Z_THAT
|l Theoretische Astroteilchenphysik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)Z_GA-20210408
980 _ _ |a I:(DE-H253)Z_THAT-20210408


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21