000459509 001__ 459509
000459509 005__ 20250715175711.0
000459509 0247_ $$2doi$$a10.1093/mnras/stac433
000459509 0247_ $$2altmetric$$aaltmetric:109269516
000459509 0247_ $$2arXiv$$aarXiv:2107.04612
000459509 0247_ $$2WOS$$aWOS:000766832600012
000459509 0247_ $$2openalex$$aopenalex:W4220958209
000459509 037__ $$aPUBDB-2021-02589
000459509 041__ $$aEnglish
000459509 082__ $$a520
000459509 088__ $$2arXiv$$aarXiv:2107.04612
000459509 088__ $$2DESY$$aDESY-21-103
000459509 1001_ $$0P:(DE-H253)PIP1032309$$aRudolph, Annika$$b0$$eCorresponding author
000459509 245__ $$aMulti-wavelength radiation models for low-luminosity GRBs, and the implications for UHECRs
000459509 260__ $$aOxford$$bOxford Univ. Press$$c2022
000459509 3367_ $$2DRIVER$$aarticle
000459509 3367_ $$2DataCite$$aOutput Types/Journal article
000459509 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1647438728_28787
000459509 3367_ $$2BibTeX$$aARTICLE
000459509 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000459509 3367_ $$00$$2EndNote$$aJournal Article
000459509 520__ $$aWe study the prompt phase of low-luminosity Gamma-Ray Bursts (LL-GRBs) as potential source of very-high-energy (VHE) gamma rays and ultra-high-energy cosmic rays (UHECRs).We model the spectral energy distribution of three representative examples (with observed properties similar to GRBs 980425, 100316D and 120714B) self-consistently in a leptonic synchrotron self-Compton (SSC) scenario using the internal shock model for the relativistic outflow. To investigate the conditions under which inverse Compton radiation may lead to a peak in the GeV-TeV range potentially observable in Imaging Atmospheric Cherenkov Telescopes (IACTs), we vary the fraction of the energy budget supplying the magnetic field. As a second step, we determine the maximal energies achievable for UHECR nuclei. Assuming LL-GRBs to power the observed UHECR flux, we derive constraints on the baryonic loading and typical GRB duration by explicitly calculating the contribution of LL-GRBs to the diffuse extragalactic gamma-ray background. We find that LL-GRBs are potential targets for multi-mavelength studies and may be in reach of current/ future IACTs and optical/ UV instruments.For comparable sub-MeV emission and similar jet properties, the multi-wavelength predictions show a strong dependence on the magnetic field: weak (strong) magnetic fields induce high (low) fluxes in the VHE regime and low (high) fluxes in the optical. However, VHE emission might be suppressed by $\gamma \gamma $-absorption close to the source (especially for high magnetic fields) or interactions with the extragalactic background light for redshifts $z > 0.1$.For UHECRs, we find that the maximal energies of iron nuclei (protons) can be as high as $\simeq 10^{11}$~GeV ($10^{10}$~GeV) if the magnetic energy density is large (where we predict a weak VHE component). These high energies are possible by decoupling the production regions of UHECR and gamma-rays in our multi-zone model. Finally, we find basic consistency with the energy budget needed to accommodate the UHECR origin from LL-GRBs.
000459509 536__ $$0G:(DE-HGF)POF4-613$$a613 - Matter and Radiation from the Universe (POF4-613)$$cPOF4-613$$fPOF IV$$x0
000459509 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000459509 650_7 $$2INSPIRE$$acosmic radiation: UHE
000459509 650_7 $$2INSPIRE$$acosmic radiation: spectrum
000459509 650_7 $$2INSPIRE$$agamma ray: burst
000459509 650_7 $$2INSPIRE$$aenergy: internal
000459509 650_7 $$2INSPIRE$$airon: nucleus
000459509 650_7 $$2INSPIRE$$agamma ray: background
000459509 650_7 $$2INSPIRE$$aenergy: high
000459509 650_7 $$2INSPIRE$$amagnetic field: high
000459509 650_7 $$2INSPIRE$$aenergy: density
000459509 650_7 $$2INSPIRE$$aenergy: magnetic
000459509 650_7 $$2INSPIRE$$aVHE
000459509 650_7 $$2INSPIRE$$aacceleration
000459509 650_7 $$2INSPIRE$$aoptical
000459509 650_7 $$2INSPIRE$$ashock waves
000459509 650_7 $$2INSPIRE$$amessenger
000459509 650_7 $$2INSPIRE$$aspectral
000459509 650_7 $$2INSPIRE$$aenergy spectrum
000459509 650_7 $$2INSPIRE$$asynchrotron
000459509 650_7 $$2INSPIRE$$adecoupling
000459509 650_7 $$2INSPIRE$$aredshift
000459509 650_7 $$2INSPIRE$$aCherenkov counter: atmosphere
000459509 650_7 $$2INSPIRE$$aimaging
000459509 650_7 $$2INSPIRE$$asuppression
000459509 693__ $$0EXP:(DE-H253)ULTRASAT-20211201$$5EXP:(DE-H253)ULTRASAT-20211201$$eUltraviolet Transient Astronomy Satellite$$x0
000459509 693__ $$0EXP:(DE-H253)CTA-20150101$$5EXP:(DE-H253)CTA-20150101$$eCherenkov Telescope Array$$x1
000459509 7001_ $$0P:(DE-HGF)0$$aBosnjak, Zeljka$$b1
000459509 7001_ $$0P:(DE-H253)PIP1082506$$aPalladino, Andrea$$b2
000459509 7001_ $$0P:(DE-H253)PIP1006066$$aSadeh, Iftach$$b3
000459509 7001_ $$0P:(DE-H253)PIP1021242$$aWinter, Walter$$b4
000459509 773__ $$0PERI:(DE-600)2016084-7$$a10.1093/mnras/stac433$$gVol. 511, no. 4, p. 5823 - 5842$$n4$$p5823 – 5842$$tMonthly notices of the Royal Astronomical Society$$v511$$x0035-8711$$y2022
000459509 8564_ $$uhttps://doi.org/10.1093/mnras/stac433
000459509 8564_ $$uhttps://bib-pubdb1.desy.de/record/459509/files/HTML-Approval_of_scientific_publication.html
000459509 8564_ $$uhttps://bib-pubdb1.desy.de/record/459509/files/PDF-Approval_of_scientific_publication.pdf
000459509 8564_ $$uhttps://bib-pubdb1.desy.de/record/459509/files/stac433.2.pdf$$yRestricted
000459509 8564_ $$uhttps://bib-pubdb1.desy.de/record/459509/files/stac433.pdf$$yRestricted
000459509 8564_ $$uhttps://bib-pubdb1.desy.de/record/459509/files/stac433.2.pdf?subformat=pdfa$$xpdfa$$yRestricted
000459509 8564_ $$uhttps://bib-pubdb1.desy.de/record/459509/files/stac433.pdf?subformat=pdfa$$xpdfa$$yRestricted
000459509 909CO $$ooai:bib-pubdb1.desy.de:459509$$pVDB
000459509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1032309$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000459509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1082506$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000459509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006066$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000459509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1021242$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000459509 9131_ $$0G:(DE-HGF)POF4-613$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vMatter and Radiation from the Universe$$x0
000459509 9141_ $$y2022
000459509 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-04$$wger
000459509 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000459509 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000459509 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000459509 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000459509 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000459509 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000459509 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000459509 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMON NOT R ASTRON SOC : 2019$$d2021-02-04
000459509 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-04
000459509 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-04
000459509 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMON NOT R ASTRON SOC : 2019$$d2021-02-04
000459509 9201_ $$0I:(DE-H253)Z_GA-20210408$$kZ_GA$$lGammaastronomie$$x0
000459509 9201_ $$0I:(DE-H253)Z_THAT-20210408$$kZ_THAT$$lTheoretische Astroteilchenphysik$$x1
000459509 980__ $$ajournal
000459509 980__ $$aVDB
000459509 980__ $$aUNRESTRICTED
000459509 980__ $$aI:(DE-H253)Z_GA-20210408
000459509 980__ $$aI:(DE-H253)Z_THAT-20210408