001     459332
005     20250715175411.0
024 7 _ |a 10.1038/s41586-021-04348-8
|2 doi
024 7 _ |a DArcy:2022zwq
|2 INSPIRETeX
024 7 _ |a inspire:2045234
|2 inspire
024 7 _ |a 0028-0836
|2 ISSN
024 7 _ |a 1476-4687
|2 ISSN
024 7 _ |a arXiv:2203.01571
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2021-02538
|2 datacite_doi
024 7 _ |a altmetric:123937537
|2 altmetric
024 7 _ |a pmid:35236975
|2 pmid
024 7 _ |a WOS:000763605400011
|2 WOS
024 7 _ |2 openalex
|a openalex:W4214906612
037 _ _ |a PUBDB-2021-02538
041 _ _ |a English
082 _ _ |a 500
088 _ _ |a arXiv:2203.01571
|2 arXiv
088 _ _ |a arXiv:2203.01571
|2 arXiv
100 1 _ |a D'Arcy, Richard
|0 P:(DE-H253)PIP1027904
|b 0
|e Corresponding author
245 _ _ |a Recovery time of a plasma-wakefield accelerator
260 _ _ |a London [u.a.]
|c 2022
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1701261098_513039
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Nature 603, 58-62 (2022)
520 _ _ |a The interaction of intense particle bunches with plasma can give rise to plasma wakes capable of sustaining gigavolt-per-metre electric fields, which are orders of magnitude higher than provided by state-of-the-art radio-frequency technology. Plasma wakefields can, therefore, strongly accelerate charged particles and offer the opportunity to reach higher particle energies with smaller and hence more widely available accelerator facilities. However, the luminosity and brilliance demands of high-energy physics and photon science require particle bunches to be accelerated at repetition rates of thousands or even millions per second, which are orders of magnitude higher than demonstrated with plasma-wakefield technology. Here we investigate the upper limit on repetition rates of beam-driven plasma accelerators by measuring the time it takes for the plasma to recover to its initial state after perturbation by a wakefield. The many-nanosecond-level recovery time measured establishes the in-principle attainability of megahertz rates of acceleration in plasmas. The experimental signatures of the perturbation are well described by simulations of a temporally evolving parabolic ion channel, transferring energy from the collapsing wake to the surrounding media. This result establishes that plasma-wakefield modules could be developed as feasible high-repetition-rate energy boosters at current and future particle-physics and photon-science facilities.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a PWA - Research group for plasma-based accelerators (PWA-20150304)
|0 G:(DE-H253)PWA-20150304
|c PWA-20150304
|x 1
536 _ _ |a 6G2 - FLASH (DESY) (POF4-6G2)
|0 G:(DE-HGF)POF4-6G2
|c POF4-6G2
|f POF IV
|x 2
588 _ _ |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
650 _ 7 |a accelerator: plasma
|2 INSPIRE
650 _ 7 |a plasma: wake field
|2 INSPIRE
650 _ 7 |a acceleration
|2 INSPIRE
650 _ 7 |a brightness
|2 INSPIRE
650 _ 7 |a charged particle: yield
|2 INSPIRE
650 _ 7 |a performance
|2 INSPIRE
650 _ 7 |a accelerator: technology
|2 INSPIRE
693 _ _ |a FLASH
|e FLASHForward
|1 EXP:(DE-H253)FLASH-20150101
|0 EXP:(DE-H253)FLASHForward-20150101
|5 EXP:(DE-H253)FLASHForward-20150101
|x 0
693 _ _ |a FLASH
|e Facility (machine) FLASH
|1 EXP:(DE-H253)FLASH-20150101
|0 EXP:(DE-H253)FLASH(machine)-20150101
|5 EXP:(DE-H253)FLASH(machine)-20150101
|x 1
693 _ _ |a FLASH2
|e Facility (machine) FLASH2
|1 EXP:(DE-H253)FLASHII-20150901
|0 EXP:(DE-H253)FLASHII(machine)-20150901
|5 EXP:(DE-H253)FLASHII(machine)-20150901
|x 2
700 1 _ |a Chappell, James
|0 P:(DE-H253)PIP1086959
|b 1
700 1 _ |a Beinortaite, Judita
|0 P:(DE-H253)PIP1094182
|b 2
700 1 _ |a Diederichs, Severin
|0 P:(DE-H253)PIP1029417
|b 3
700 1 _ |a Boyle, Gregory James
|0 P:(DE-H253)PIP1083196
|b 4
700 1 _ |a Foster, Brian
|0 P:(DE-H253)PIP1003141
|b 5
700 1 _ |a Garland, Matthew James
|0 P:(DE-H253)PIP1084257
|b 6
700 1 _ |a Gonzalez Caminal, Pau
|0 P:(DE-H253)PIP1022006
|b 7
700 1 _ |a Lindstroem, Carl Andreas
|0 P:(DE-H253)PIP1086874
|b 8
700 1 _ |a Loisch, Gregor
|0 P:(DE-H253)PIP1026627
|b 9
700 1 _ |a Schreiber, Siegfried
|0 P:(DE-H253)PIP1001613
|b 10
700 1 _ |a Schröder, Sarah
|0 P:(DE-H253)PIP1023434
|b 11
700 1 _ |a Shalloo, Rob
|0 P:(DE-H253)PIP1093266
|b 12
700 1 _ |a Thévenet, Maxence
|0 P:(DE-H253)PIP1093740
|b 13
700 1 _ |a Wesch, Stephan
|0 P:(DE-H253)PIP1006306
|b 14
700 1 _ |a Wing, Matthew
|0 P:(DE-H253)PIP1002533
|b 15
700 1 _ |a Osterhoff, Jens
|0 P:(DE-H253)PIP1012785
|b 16
773 _ _ |a 10.1038/s41586-021-04348-8
|g Vol. 603, no. 7899, p. 58 - 62
|0 PERI:(DE-600)1413423-8
|p 58 - 62
|t Nature
|v 603
|y 2022
|x 0028-0836
856 4 _ |u https://bib-pubdb1.desy.de/record/459332/files/Admin-D%C2%B4Arcy.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/459332/files/Admin-D%C2%B4Arcy.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/459332/files/s41586-021-04348-8.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/459332/files/s41586-021-04348-8.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:459332
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
|q OpenAPC_DEAL
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1027904
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1086959
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1094182
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1029417
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1083196
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1003141
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1003141
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1084257
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1022006
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1086874
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1026627
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1026627
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1001613
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1023434
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 12
|6 P:(DE-H253)PIP1093266
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 13
|6 P:(DE-H253)PIP1093740
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 14
|6 P:(DE-H253)PIP1006306
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 15
|6 P:(DE-H253)PIP1002533
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 16
|6 P:(DE-H253)PIP1012785
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G2
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v FLASH (DESY)
|x 1
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and Technologies
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2022
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a German academic consortium, administered by Max Planck Digital Library: Springer Nature 2021
|0 PC:(DE-HGF)0114
|2 APC
915 _ _ |a IF >= 40
|0 StatID:(DE-HGF)9940
|2 StatID
|b NATURE : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NATURE : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 1 _ |0 I:(DE-H253)MPA2-20210408
|k MPA2
|l Beam-Driven Plasma Accelerators
|x 0
920 1 _ |0 I:(DE-H253)HH_FH_FTX_AS-20210421
|k HH_FH_FTX_AS
|l FTX Fachgruppe AST
|x 1
920 1 _ |0 I:(DE-H253)MPA1-20210408
|k MPA1
|l Plasma Theory and Simulations
|x 2
920 1 _ |0 I:(DE-H253)FTX-20210408
|k FTX
|l Technol. zukünft. Teilchenph. Experim.
|x 3
920 1 _ |0 I:(DE-H253)FS-PS-20131107
|k FS-PS
|l FS-Photon Science
|x 4
920 1 _ |0 I:(DE-H253)MIN-20120731
|k MIN
|l Injektion
|x 5
920 1 _ |0 I:(DE-H253)MFL-20120731
|k MFL
|l Maschinen Koordination FLASH
|x 6
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)MPA2-20210408
980 _ _ |a I:(DE-H253)HH_FH_FTX_AS-20210421
980 _ _ |a I:(DE-H253)MPA1-20210408
980 _ _ |a I:(DE-H253)FTX-20210408
980 _ _ |a I:(DE-H253)FS-PS-20131107
980 _ _ |a I:(DE-H253)MIN-20120731
980 _ _ |a I:(DE-H253)MFL-20120731
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21