001 | 459332 | ||
005 | 20250715175411.0 | ||
024 | 7 | _ | |a 10.1038/s41586-021-04348-8 |2 doi |
024 | 7 | _ | |a DArcy:2022zwq |2 INSPIRETeX |
024 | 7 | _ | |a inspire:2045234 |2 inspire |
024 | 7 | _ | |a 0028-0836 |2 ISSN |
024 | 7 | _ | |a 1476-4687 |2 ISSN |
024 | 7 | _ | |a arXiv:2203.01571 |2 arXiv |
024 | 7 | _ | |a 10.3204/PUBDB-2021-02538 |2 datacite_doi |
024 | 7 | _ | |a altmetric:123937537 |2 altmetric |
024 | 7 | _ | |a pmid:35236975 |2 pmid |
024 | 7 | _ | |a WOS:000763605400011 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4214906612 |
037 | _ | _ | |a PUBDB-2021-02538 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
088 | _ | _ | |a arXiv:2203.01571 |2 arXiv |
088 | _ | _ | |a arXiv:2203.01571 |2 arXiv |
100 | 1 | _ | |a D'Arcy, Richard |0 P:(DE-H253)PIP1027904 |b 0 |e Corresponding author |
245 | _ | _ | |a Recovery time of a plasma-wakefield accelerator |
260 | _ | _ | |a London [u.a.] |c 2022 |b Nature Publ. Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1701261098_513039 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Nature 603, 58-62 (2022) |
520 | _ | _ | |a The interaction of intense particle bunches with plasma can give rise to plasma wakes capable of sustaining gigavolt-per-metre electric fields, which are orders of magnitude higher than provided by state-of-the-art radio-frequency technology. Plasma wakefields can, therefore, strongly accelerate charged particles and offer the opportunity to reach higher particle energies with smaller and hence more widely available accelerator facilities. However, the luminosity and brilliance demands of high-energy physics and photon science require particle bunches to be accelerated at repetition rates of thousands or even millions per second, which are orders of magnitude higher than demonstrated with plasma-wakefield technology. Here we investigate the upper limit on repetition rates of beam-driven plasma accelerators by measuring the time it takes for the plasma to recover to its initial state after perturbation by a wakefield. The many-nanosecond-level recovery time measured establishes the in-principle attainability of megahertz rates of acceleration in plasmas. The experimental signatures of the perturbation are well described by simulations of a temporally evolving parabolic ion channel, transferring energy from the collapsing wake to the surrounding media. This result establishes that plasma-wakefield modules could be developed as feasible high-repetition-rate energy boosters at current and future particle-physics and photon-science facilities. |
536 | _ | _ | |a 621 - Accelerator Research and Development (POF4-621) |0 G:(DE-HGF)POF4-621 |c POF4-621 |f POF IV |x 0 |
536 | _ | _ | |a PWA - Research group for plasma-based accelerators (PWA-20150304) |0 G:(DE-H253)PWA-20150304 |c PWA-20150304 |x 1 |
536 | _ | _ | |a 6G2 - FLASH (DESY) (POF4-6G2) |0 G:(DE-HGF)POF4-6G2 |c POF4-6G2 |f POF IV |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de |
650 | _ | 7 | |a accelerator: plasma |2 INSPIRE |
650 | _ | 7 | |a plasma: wake field |2 INSPIRE |
650 | _ | 7 | |a acceleration |2 INSPIRE |
650 | _ | 7 | |a brightness |2 INSPIRE |
650 | _ | 7 | |a charged particle: yield |2 INSPIRE |
650 | _ | 7 | |a performance |2 INSPIRE |
650 | _ | 7 | |a accelerator: technology |2 INSPIRE |
693 | _ | _ | |a FLASH |e FLASHForward |1 EXP:(DE-H253)FLASH-20150101 |0 EXP:(DE-H253)FLASHForward-20150101 |5 EXP:(DE-H253)FLASHForward-20150101 |x 0 |
693 | _ | _ | |a FLASH |e Facility (machine) FLASH |1 EXP:(DE-H253)FLASH-20150101 |0 EXP:(DE-H253)FLASH(machine)-20150101 |5 EXP:(DE-H253)FLASH(machine)-20150101 |x 1 |
693 | _ | _ | |a FLASH2 |e Facility (machine) FLASH2 |1 EXP:(DE-H253)FLASHII-20150901 |0 EXP:(DE-H253)FLASHII(machine)-20150901 |5 EXP:(DE-H253)FLASHII(machine)-20150901 |x 2 |
700 | 1 | _ | |a Chappell, James |0 P:(DE-H253)PIP1086959 |b 1 |
700 | 1 | _ | |a Beinortaite, Judita |0 P:(DE-H253)PIP1094182 |b 2 |
700 | 1 | _ | |a Diederichs, Severin |0 P:(DE-H253)PIP1029417 |b 3 |
700 | 1 | _ | |a Boyle, Gregory James |0 P:(DE-H253)PIP1083196 |b 4 |
700 | 1 | _ | |a Foster, Brian |0 P:(DE-H253)PIP1003141 |b 5 |
700 | 1 | _ | |a Garland, Matthew James |0 P:(DE-H253)PIP1084257 |b 6 |
700 | 1 | _ | |a Gonzalez Caminal, Pau |0 P:(DE-H253)PIP1022006 |b 7 |
700 | 1 | _ | |a Lindstroem, Carl Andreas |0 P:(DE-H253)PIP1086874 |b 8 |
700 | 1 | _ | |a Loisch, Gregor |0 P:(DE-H253)PIP1026627 |b 9 |
700 | 1 | _ | |a Schreiber, Siegfried |0 P:(DE-H253)PIP1001613 |b 10 |
700 | 1 | _ | |a Schröder, Sarah |0 P:(DE-H253)PIP1023434 |b 11 |
700 | 1 | _ | |a Shalloo, Rob |0 P:(DE-H253)PIP1093266 |b 12 |
700 | 1 | _ | |a Thévenet, Maxence |0 P:(DE-H253)PIP1093740 |b 13 |
700 | 1 | _ | |a Wesch, Stephan |0 P:(DE-H253)PIP1006306 |b 14 |
700 | 1 | _ | |a Wing, Matthew |0 P:(DE-H253)PIP1002533 |b 15 |
700 | 1 | _ | |a Osterhoff, Jens |0 P:(DE-H253)PIP1012785 |b 16 |
773 | _ | _ | |a 10.1038/s41586-021-04348-8 |g Vol. 603, no. 7899, p. 58 - 62 |0 PERI:(DE-600)1413423-8 |p 58 - 62 |t Nature |v 603 |y 2022 |x 0028-0836 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/459332/files/Admin-D%C2%B4Arcy.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/459332/files/Admin-D%C2%B4Arcy.pdf?subformat=pdfa |x pdfa |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/459332/files/s41586-021-04348-8.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/459332/files/s41586-021-04348-8.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:459332 |p openaire |p open_access |p driver |p VDB |p openCost |p dnbdelivery |q OpenAPC_DEAL |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1027904 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1086959 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1094182 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1029417 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1083196 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 5 |6 P:(DE-H253)PIP1003141 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1003141 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 6 |6 P:(DE-H253)PIP1084257 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1022006 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 8 |6 P:(DE-H253)PIP1086874 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 9 |6 P:(DE-H253)PIP1026627 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-H253)PIP1026627 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 10 |6 P:(DE-H253)PIP1001613 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 11 |6 P:(DE-H253)PIP1023434 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 12 |6 P:(DE-H253)PIP1093266 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 13 |6 P:(DE-H253)PIP1093740 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 14 |6 P:(DE-H253)PIP1006306 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 15 |6 P:(DE-H253)PIP1002533 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 16 |6 P:(DE-H253)PIP1012785 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-621 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Accelerator Research and Development |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G2 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v FLASH (DESY) |x 1 |
913 | 2 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and Technologies |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-621 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Accelerator Research and Development |x 0 |
914 | 1 | _ | |y 2022 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
915 | p | c | |a DFG OA Publikationskosten |0 PC:(DE-HGF)0002 |2 APC |
915 | p | c | |a German academic consortium, administered by Max Planck Digital Library: Springer Nature 2021 |0 PC:(DE-HGF)0114 |2 APC |
915 | _ | _ | |a IF >= 40 |0 StatID:(DE-HGF)9940 |2 StatID |b NATURE : 2019 |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2021-01-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NATURE : 2019 |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2021-01-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-27 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-27 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-27 |
920 | 1 | _ | |0 I:(DE-H253)MPA2-20210408 |k MPA2 |l Beam-Driven Plasma Accelerators |x 0 |
920 | 1 | _ | |0 I:(DE-H253)HH_FH_FTX_AS-20210421 |k HH_FH_FTX_AS |l FTX Fachgruppe AST |x 1 |
920 | 1 | _ | |0 I:(DE-H253)MPA1-20210408 |k MPA1 |l Plasma Theory and Simulations |x 2 |
920 | 1 | _ | |0 I:(DE-H253)FTX-20210408 |k FTX |l Technol. zukünft. Teilchenph. Experim. |x 3 |
920 | 1 | _ | |0 I:(DE-H253)FS-PS-20131107 |k FS-PS |l FS-Photon Science |x 4 |
920 | 1 | _ | |0 I:(DE-H253)MIN-20120731 |k MIN |l Injektion |x 5 |
920 | 1 | _ | |0 I:(DE-H253)MFL-20120731 |k MFL |l Maschinen Koordination FLASH |x 6 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)MPA2-20210408 |
980 | _ | _ | |a I:(DE-H253)HH_FH_FTX_AS-20210421 |
980 | _ | _ | |a I:(DE-H253)MPA1-20210408 |
980 | _ | _ | |a I:(DE-H253)FTX-20210408 |
980 | _ | _ | |a I:(DE-H253)FS-PS-20131107 |
980 | _ | _ | |a I:(DE-H253)MIN-20120731 |
980 | _ | _ | |a I:(DE-H253)MFL-20120731 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|