000459332 001__ 459332 000459332 005__ 20250715175411.0 000459332 0247_ $$2doi$$a10.1038/s41586-021-04348-8 000459332 0247_ $$2INSPIRETeX$$aDArcy:2022zwq 000459332 0247_ $$2inspire$$ainspire:2045234 000459332 0247_ $$2ISSN$$a0028-0836 000459332 0247_ $$2ISSN$$a1476-4687 000459332 0247_ $$2arXiv$$aarXiv:2203.01571 000459332 0247_ $$2datacite_doi$$a10.3204/PUBDB-2021-02538 000459332 0247_ $$2altmetric$$aaltmetric:123937537 000459332 0247_ $$2pmid$$apmid:35236975 000459332 0247_ $$2WOS$$aWOS:000763605400011 000459332 0247_ $$2openalex$$aopenalex:W4214906612 000459332 037__ $$aPUBDB-2021-02538 000459332 041__ $$aEnglish 000459332 082__ $$a500 000459332 088__ $$2arXiv$$aarXiv:2203.01571 000459332 088__ $$2arXiv$$aarXiv:2203.01571 000459332 1001_ $$0P:(DE-H253)PIP1027904$$aD'Arcy, Richard$$b0$$eCorresponding author 000459332 245__ $$aRecovery time of a plasma-wakefield accelerator 000459332 260__ $$aLondon [u.a.]$$bNature Publ. Group$$c2022 000459332 3367_ $$2DRIVER$$aarticle 000459332 3367_ $$2DataCite$$aOutput Types/Journal article 000459332 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1701261098_513039 000459332 3367_ $$2BibTeX$$aARTICLE 000459332 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000459332 3367_ $$00$$2EndNote$$aJournal Article 000459332 500__ $$aNature 603, 58-62 (2022) 000459332 520__ $$aThe interaction of intense particle bunches with plasma can give rise to plasma wakes capable of sustaining gigavolt-per-metre electric fields, which are orders of magnitude higher than provided by state-of-the-art radio-frequency technology. Plasma wakefields can, therefore, strongly accelerate charged particles and offer the opportunity to reach higher particle energies with smaller and hence more widely available accelerator facilities. However, the luminosity and brilliance demands of high-energy physics and photon science require particle bunches to be accelerated at repetition rates of thousands or even millions per second, which are orders of magnitude higher than demonstrated with plasma-wakefield technology. Here we investigate the upper limit on repetition rates of beam-driven plasma accelerators by measuring the time it takes for the plasma to recover to its initial state after perturbation by a wakefield. The many-nanosecond-level recovery time measured establishes the in-principle attainability of megahertz rates of acceleration in plasmas. The experimental signatures of the perturbation are well described by simulations of a temporally evolving parabolic ion channel, transferring energy from the collapsing wake to the surrounding media. This result establishes that plasma-wakefield modules could be developed as feasible high-repetition-rate energy boosters at current and future particle-physics and photon-science facilities. 000459332 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0 000459332 536__ $$0G:(DE-H253)PWA-20150304$$aPWA - Research group for plasma-based accelerators (PWA-20150304)$$cPWA-20150304$$x1 000459332 536__ $$0G:(DE-HGF)POF4-6G2$$a6G2 - FLASH (DESY) (POF4-6G2)$$cPOF4-6G2$$fPOF IV$$x2 000459332 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de 000459332 650_7 $$2INSPIRE$$aaccelerator: plasma 000459332 650_7 $$2INSPIRE$$aplasma: wake field 000459332 650_7 $$2INSPIRE$$aacceleration 000459332 650_7 $$2INSPIRE$$abrightness 000459332 650_7 $$2INSPIRE$$acharged particle: yield 000459332 650_7 $$2INSPIRE$$aperformance 000459332 650_7 $$2INSPIRE$$aaccelerator: technology 000459332 693__ $$0EXP:(DE-H253)FLASHForward-20150101$$1EXP:(DE-H253)FLASH-20150101$$5EXP:(DE-H253)FLASHForward-20150101$$aFLASH$$eFLASHForward$$x0 000459332 693__ $$0EXP:(DE-H253)FLASH(machine)-20150101$$1EXP:(DE-H253)FLASH-20150101$$5EXP:(DE-H253)FLASH(machine)-20150101$$aFLASH$$eFacility (machine) FLASH$$x1 000459332 693__ $$0EXP:(DE-H253)FLASHII(machine)-20150901$$1EXP:(DE-H253)FLASHII-20150901$$5EXP:(DE-H253)FLASHII(machine)-20150901$$aFLASH2$$eFacility (machine) FLASH2$$x2 000459332 7001_ $$0P:(DE-H253)PIP1086959$$aChappell, James$$b1 000459332 7001_ $$0P:(DE-H253)PIP1094182$$aBeinortaite, Judita$$b2 000459332 7001_ $$0P:(DE-H253)PIP1029417$$aDiederichs, Severin$$b3 000459332 7001_ $$0P:(DE-H253)PIP1083196$$aBoyle, Gregory James$$b4 000459332 7001_ $$0P:(DE-H253)PIP1003141$$aFoster, Brian$$b5 000459332 7001_ $$0P:(DE-H253)PIP1084257$$aGarland, Matthew James$$b6 000459332 7001_ $$0P:(DE-H253)PIP1022006$$aGonzalez Caminal, Pau$$b7 000459332 7001_ $$0P:(DE-H253)PIP1086874$$aLindstroem, Carl Andreas$$b8 000459332 7001_ $$0P:(DE-H253)PIP1026627$$aLoisch, Gregor$$b9 000459332 7001_ $$0P:(DE-H253)PIP1001613$$aSchreiber, Siegfried$$b10 000459332 7001_ $$0P:(DE-H253)PIP1023434$$aSchröder, Sarah$$b11 000459332 7001_ $$0P:(DE-H253)PIP1093266$$aShalloo, Rob$$b12 000459332 7001_ $$0P:(DE-H253)PIP1093740$$aThévenet, Maxence$$b13 000459332 7001_ $$0P:(DE-H253)PIP1006306$$aWesch, Stephan$$b14 000459332 7001_ $$0P:(DE-H253)PIP1002533$$aWing, Matthew$$b15 000459332 7001_ $$0P:(DE-H253)PIP1012785$$aOsterhoff, Jens$$b16 000459332 773__ $$0PERI:(DE-600)1413423-8$$a10.1038/s41586-021-04348-8$$gVol. 603, no. 7899, p. 58 - 62$$p58 - 62$$tNature <London>$$v603$$x0028-0836$$y2022 000459332 8564_ $$uhttps://bib-pubdb1.desy.de/record/459332/files/Admin-D%C2%B4Arcy.pdf 000459332 8564_ $$uhttps://bib-pubdb1.desy.de/record/459332/files/Admin-D%C2%B4Arcy.pdf?subformat=pdfa$$xpdfa 000459332 8564_ $$uhttps://bib-pubdb1.desy.de/record/459332/files/s41586-021-04348-8.pdf$$yOpenAccess 000459332 8564_ $$uhttps://bib-pubdb1.desy.de/record/459332/files/s41586-021-04348-8.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000459332 8767_ $$92022-01-26$$d2022-01-26$$eHybrid-OA$$jPublish and Read$$lSpringerNature$$zNature portfolio 000459332 909CO $$ooai:bib-pubdb1.desy.de:459332$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire$$qOpenAPC_DEAL 000459332 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1027904$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY 000459332 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086959$$aExternal Institute$$b1$$kExtern 000459332 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1094182$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY 000459332 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1029417$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY 000459332 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1083196$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY 000459332 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003141$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY 000459332 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1003141$$aExternal Institute$$b5$$kExtern 000459332 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1084257$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY 000459332 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1022006$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY 000459332 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1086874$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY 000459332 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1026627$$aDeutsches Elektronen-Synchrotron$$b9$$kDESY 000459332 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1026627$$aExternal Institute$$b9$$kExtern 000459332 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1001613$$aDeutsches Elektronen-Synchrotron$$b10$$kDESY 000459332 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1023434$$aDeutsches Elektronen-Synchrotron$$b11$$kDESY 000459332 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1093266$$aDeutsches Elektronen-Synchrotron$$b12$$kDESY 000459332 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1093740$$aDeutsches Elektronen-Synchrotron$$b13$$kDESY 000459332 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006306$$aDeutsches Elektronen-Synchrotron$$b14$$kDESY 000459332 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1002533$$aExternal Institute$$b15$$kExtern 000459332 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1012785$$aDeutsches Elektronen-Synchrotron$$b16$$kDESY 000459332 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator Research and Development$$x0 000459332 9131_ $$0G:(DE-HGF)POF4-6G2$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFLASH (DESY)$$x1 000459332 9132_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and Technologies$$vAccelerator Research and Development$$x0 000459332 9141_ $$y2022 000459332 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 000459332 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 000459332 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 000459332 915pc $$0PC:(DE-HGF)0114$$2APC$$aGerman academic consortium, administered by Max Planck Digital Library: Springer Nature 2021 000459332 915__ $$0StatID:(DE-HGF)9940$$2StatID$$aIF >= 40$$bNATURE : 2019$$d2021-01-27 000459332 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27 000459332 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27 000459332 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-27 000459332 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27 000459332 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27 000459332 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-01-27 000459332 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-27 000459332 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNATURE : 2019$$d2021-01-27 000459332 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27 000459332 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-27 000459332 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2021-01-27 000459332 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27 000459332 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27 000459332 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000459332 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27 000459332 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-27 000459332 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27 000459332 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000459332 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger 000459332 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27 000459332 9201_ $$0I:(DE-H253)MPA2-20210408$$kMPA2$$lBeam-Driven Plasma Accelerators$$x0 000459332 9201_ $$0I:(DE-H253)HH_FH_FTX_AS-20210421$$kHH_FH_FTX_AS$$lFTX Fachgruppe AST$$x1 000459332 9201_ $$0I:(DE-H253)MPA1-20210408$$kMPA1$$lPlasma Theory and Simulations$$x2 000459332 9201_ $$0I:(DE-H253)FTX-20210408$$kFTX$$lTechnol. zukünft. Teilchenph. Experim.$$x3 000459332 9201_ $$0I:(DE-H253)FS-PS-20131107$$kFS-PS$$lFS-Photon Science$$x4 000459332 9201_ $$0I:(DE-H253)MIN-20120731$$kMIN$$lInjektion$$x5 000459332 9201_ $$0I:(DE-H253)MFL-20120731$$kMFL$$lMaschinen Koordination FLASH$$x6 000459332 980__ $$ajournal 000459332 980__ $$aVDB 000459332 980__ $$aI:(DE-H253)MPA2-20210408 000459332 980__ $$aI:(DE-H253)HH_FH_FTX_AS-20210421 000459332 980__ $$aI:(DE-H253)MPA1-20210408 000459332 980__ $$aI:(DE-H253)FTX-20210408 000459332 980__ $$aI:(DE-H253)FS-PS-20131107 000459332 980__ $$aI:(DE-H253)MIN-20120731 000459332 980__ $$aI:(DE-H253)MFL-20120731 000459332 980__ $$aAPC 000459332 980__ $$aUNRESTRICTED 000459332 9801_ $$aAPC 000459332 9801_ $$aFullTexts