001     459128
005     20250716150741.0
024 7 _ |a 10.3390/app11136058
|2 doi
024 7 _ |a 10.3204/PUBDB-2021-02429
|2 datacite_doi
024 7 _ |a WOS:000672310100001
|2 WOS
024 7 _ |2 openalex
|a openalex:W3174776398
037 _ _ |a PUBDB-2021-02429
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Paraskaki, Georgia
|0 P:(DE-H253)PIP1084569
|b 0
245 _ _ |a Advanced Scheme to Generate MHz, Fully Coherent FEL Pulses at nm Wavelength
260 _ _ |a Basel
|c 2021
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1663154372_23756
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Current FEL development efforts aim at improving the control of coherence at high repetition-rate while keeping the wavelength tunability. Seeding schemes, like HGHG and EEHG, allow for the generation of fully coherent FEL pulses, but the powerful external seed laser required limits the repetition-rate that can be achieved. In turns, this impacts the average brightness, and the amount of statistics that experiments can do. In order to solve this issue, here we we take a unique approach and discuss the use of one or more optical cavities to seed the electron bunches accelerated in a superconducting linac to modulate their energy. Like standard seeding schemes, the cavity is followed by a dispersive section, which manipulates the longitudinal phase space of the electron bunches, inducing longitudinal density modulations with high harmonic content that undergo the FEL process in an amplifier placed downstream. We will discuss technical requirements for implementing these setups and their operation range based on numerical simulations.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a 6G2 - FLASH (DESY) (POF4-6G2)
|0 G:(DE-HGF)POF4-6G2
|c POF4-6G2
|f POF IV
|x 1
693 _ _ |a FLASH II
|e FLASH 2020+ Project
|1 EXP:(DE-H253)FLASHII-20150901
|0 EXP:(DE-H253)FLASH2020p-20221201
|5 EXP:(DE-H253)FLASH2020p-20221201
|x 0
700 1 _ |a Faatz, Bart
|0 P:(DE-H253)PIP1002602
|b 1
700 1 _ |a Ackermann, Sven
|0 P:(DE-H253)PIP1008868
|b 2
700 1 _ |a Schaper, Lucas
|0 P:(DE-H253)PIP1015071
|b 3
700 1 _ |a Zemella, Johann
|0 P:(DE-H253)PIP1006317
|b 4
700 1 _ |a Lang, Tino
|0 P:(DE-H253)PIP1024674
|b 5
700 1 _ |a Geloni, Gianluca
|0 P:(DE-H253)PIP1000427
|b 6
|e Corresponding author
700 1 _ |a Pannek, Fabian
|0 P:(DE-H253)PIP1023734
|b 7
770 _ _ |a Oscillator-Amplifier Free Electron Lasers an Outlook to Their Feasibility and Performances
773 _ _ |a 10.3390/app11136058
|0 PERI:(DE-600)2704225-X
|n 13
|p 6058
|t Applied Sciences
|v 11
|y 2021
|x 2076-3417
856 4 _ |u https://www.mdpi.com/2076-3417/11/13/6058
856 4 _ |u https://bib-pubdb1.desy.de/record/459128/files/Internal_review.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/459128/files/Internal_review.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/459128/files/applsci-11-06058-v2%20%2822%29.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/459128/files/manuscript.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/459128/files/applsci-11-06058-v2%20%2822%29.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:459128
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1084569
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1002602
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1008868
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1015071
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1015071
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1006317
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1024674
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 6
|6 P:(DE-H253)PIP1000427
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1023734
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 7
|6 P:(DE-H253)PIP1023734
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and Technologies
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G2
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v FLASH (DESY)
|x 1
913 0 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF3-630
|0 G:(DE-HGF)POF3-631
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Accelerator R & D
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL SCI-BASEL : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-05-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 1 _ |0 I:(DE-H253)MFL-20120731
|k MFL
|l Maschinen Koordination FLASH
|x 0
920 1 _ |0 I:(DE-H253)FS-FLASH-20140814
|k FS-FLASH
|l FS-FLASH
|x 1
920 1 _ |0 I:(DE-H253)MPY-20120731
|k MPY
|l Beschleunigerphysik
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)MFL-20120731
980 _ _ |a I:(DE-H253)FS-FLASH-20140814
980 _ _ |a I:(DE-H253)MPY-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21