| Home > Publications database > Advanced Scheme to Generate MHz, Fully Coherent FEL Pulses at nm Wavelength > print |
| 001 | 459128 | ||
| 005 | 20250716150741.0 | ||
| 024 | 7 | _ | |a 10.3390/app11136058 |2 doi |
| 024 | 7 | _ | |a 10.3204/PUBDB-2021-02429 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:000672310100001 |2 WOS |
| 024 | 7 | _ | |2 openalex |a openalex:W3174776398 |
| 037 | _ | _ | |a PUBDB-2021-02429 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Paraskaki, Georgia |0 P:(DE-H253)PIP1084569 |b 0 |
| 245 | _ | _ | |a Advanced Scheme to Generate MHz, Fully Coherent FEL Pulses at nm Wavelength |
| 260 | _ | _ | |a Basel |c 2021 |b MDPI |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1663154372_23756 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Current FEL development efforts aim at improving the control of coherence at high repetition-rate while keeping the wavelength tunability. Seeding schemes, like HGHG and EEHG, allow for the generation of fully coherent FEL pulses, but the powerful external seed laser required limits the repetition-rate that can be achieved. In turns, this impacts the average brightness, and the amount of statistics that experiments can do. In order to solve this issue, here we we take a unique approach and discuss the use of one or more optical cavities to seed the electron bunches accelerated in a superconducting linac to modulate their energy. Like standard seeding schemes, the cavity is followed by a dispersive section, which manipulates the longitudinal phase space of the electron bunches, inducing longitudinal density modulations with high harmonic content that undergo the FEL process in an amplifier placed downstream. We will discuss technical requirements for implementing these setups and their operation range based on numerical simulations. |
| 536 | _ | _ | |a 621 - Accelerator Research and Development (POF4-621) |0 G:(DE-HGF)POF4-621 |c POF4-621 |f POF IV |x 0 |
| 536 | _ | _ | |a 6G2 - FLASH (DESY) (POF4-6G2) |0 G:(DE-HGF)POF4-6G2 |c POF4-6G2 |f POF IV |x 1 |
| 693 | _ | _ | |a FLASH II |e FLASH 2020+ Project |1 EXP:(DE-H253)FLASHII-20150901 |0 EXP:(DE-H253)FLASH2020p-20221201 |5 EXP:(DE-H253)FLASH2020p-20221201 |x 0 |
| 700 | 1 | _ | |a Faatz, Bart |0 P:(DE-H253)PIP1002602 |b 1 |
| 700 | 1 | _ | |a Ackermann, Sven |0 P:(DE-H253)PIP1008868 |b 2 |
| 700 | 1 | _ | |a Schaper, Lucas |0 P:(DE-H253)PIP1015071 |b 3 |
| 700 | 1 | _ | |a Zemella, Johann |0 P:(DE-H253)PIP1006317 |b 4 |
| 700 | 1 | _ | |a Lang, Tino |0 P:(DE-H253)PIP1024674 |b 5 |
| 700 | 1 | _ | |a Geloni, Gianluca |0 P:(DE-H253)PIP1000427 |b 6 |e Corresponding author |
| 700 | 1 | _ | |a Pannek, Fabian |0 P:(DE-H253)PIP1023734 |b 7 |
| 770 | _ | _ | |a Oscillator-Amplifier Free Electron Lasers an Outlook to Their Feasibility and Performances |
| 773 | _ | _ | |a 10.3390/app11136058 |0 PERI:(DE-600)2704225-X |n 13 |p 6058 |t Applied Sciences |v 11 |y 2021 |x 2076-3417 |
| 856 | 4 | _ | |u https://www.mdpi.com/2076-3417/11/13/6058 |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/459128/files/Internal_review.pdf |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/459128/files/Internal_review.pdf?subformat=pdfa |x pdfa |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/459128/files/applsci-11-06058-v2%20%2822%29.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/459128/files/manuscript.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/459128/files/applsci-11-06058-v2%20%2822%29.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:459128 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1084569 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1002602 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1008868 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1015071 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1015071 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1006317 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 5 |6 P:(DE-H253)PIP1024674 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 6 |6 P:(DE-H253)PIP1000427 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-H253)PIP1023734 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 7 |6 P:(DE-H253)PIP1023734 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and Technologies |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-621 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Accelerator Research and Development |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G2 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v FLASH (DESY) |x 1 |
| 913 | 0 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF3-630 |0 G:(DE-HGF)POF3-631 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |4 G:(DE-HGF)POF |v Accelerator R & D |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-05-04 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b APPL SCI-BASEL : 2019 |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-05-04 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-05-04 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-05-04 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-05-04 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-05-04 |
| 920 | 1 | _ | |0 I:(DE-H253)MFL-20120731 |k MFL |l Maschinen Koordination FLASH |x 0 |
| 920 | 1 | _ | |0 I:(DE-H253)FS-FLASH-20140814 |k FS-FLASH |l FS-FLASH |x 1 |
| 920 | 1 | _ | |0 I:(DE-H253)MPY-20120731 |k MPY |l Beschleunigerphysik |x 2 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-H253)MFL-20120731 |
| 980 | _ | _ | |a I:(DE-H253)FS-FLASH-20140814 |
| 980 | _ | _ | |a I:(DE-H253)MPY-20120731 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|