Home > Publications database > Three‐Component Self‐Assembly Changes its Course: A Leap from Simple Polymers to 3D Networks of Spherical Host–Guest Assemblies > print |
001 | 458619 | ||
005 | 20250724175446.0 | ||
024 | 7 | _ | |a 10.1002/anie.202103178 |2 doi |
024 | 7 | _ | |a 0570-0833 |2 ISSN |
024 | 7 | _ | |a 1433-7851 |2 ISSN |
024 | 7 | _ | |a 1521-3773 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2021-02272 |2 datacite_doi |
024 | 7 | _ | |a altmetric:105263355 |2 altmetric |
024 | 7 | _ | |a pmid:33686782 |2 pmid |
024 | 7 | _ | |a WOS:000646323700001 |2 WOS |
024 | 7 | _ | |a openalex:W3134925163 |2 openalex |
037 | _ | _ | |a PUBDB-2021-02272 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Peresypkina, Eugenia |0 P:(DE-H253)PIP1027099 |b 0 |
245 | _ | _ | |a Three‐Component Self‐Assembly Changes its Course: A Leap from Simple Polymers to 3D Networks of Spherical Host–Guest Assemblies |
260 | _ | _ | |a Weinheim |c 2021 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1623401063_559 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a One-pot self-assembly reactions of the polyphosphoruscomplex [Cp*Fe($\eta^5$-P$_5$)] (A), a coinage metal saltAgSbF$_6$, and flexible aliphatic dinitriles NC(CH$_2$)$_x$CN (x=1–10) yield 1D, 2D, and 3D coordination polymers. The sevenmemberedbackbone of the dinitrile was experimentally foundas the borderline for the self-assembly system furnishingproducts of different kinds. At x<7, various rather simplepolymers are exclusively formed possessing either 0D or 1DAg/A structural motifs connected by dinitrile spacers, while at x$\geq$+7, the self-assembly switches to unprecedented extraordinary3D networks of nano-sized host–guest assemblies(SbF$_6$)@[(A)$_9$Ag$_{11}$]$^{11+}$ (x=7) or (A)@[(A)$_{12}$Ag$_{12}$]$^{12+}$ (x=8–10) linked by dinitriles. The polycationic nodes represent thefirst superspheres based on A and silver and are host–guestable. All products are characterized by NMR spectroscopy,mass spectrometry, and single-crystal X-ray diffraction. Theassemblies [(A)$_{12}$Ag$_{12}$]$^{12+}$ were visualized by transmissionelectron microscopy. |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 0 |
536 | _ | _ | |a FS-Proposal: I-20160654 (I-20160654) |0 G:(DE-H253)I-20160654 |c I-20160654 |x 1 |
536 | _ | _ | |a FS-Proposal: I-20180967 (I-20180967) |0 G:(DE-H253)I-20180967 |c I-20180967 |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P11 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P11-20150101 |6 EXP:(DE-H253)P-P11-20150101 |x 0 |
693 | _ | _ | |a PETRA III |f PETRA Beamline P24 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P24-20150101 |6 EXP:(DE-H253)P-P24-20150101 |x 1 |
700 | 1 | _ | |a Grill, Kevin |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Hiltl, Barbara |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Virovets, Alexandr |0 P:(DE-H253)PIP1026845 |b 3 |
700 | 1 | _ | |a Kremer, Werner |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Hilgert, Jan |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Tremel, Wolfgang |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Scheer, Manfred |0 P:(DE-H253)PIP1027085 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.1002/anie.202103178 |g Vol. 60, no. 21, p. 12132 - 12142 |0 PERI:(DE-600)2011836-3 |n 21 |p 12132 - 12142 |t Angewandte Chemie / International edition |v 60 |y 2021 |x 1521-3773 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/458619/files/anie.202103178.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/458619/files/anie.202103178.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:458619 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1027099 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1026845 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-H253)PIP1027085 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 0 |
913 | 0 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-622 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |4 G:(DE-HGF)POF |v Facility topic: Research on Matter with Brilliant Light Sources |9 G:(DE-HGF)POF3-6G3 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-30 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ANGEW CHEM INT EDIT : 2019 |d 2021-01-30 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b ANGEW CHEM INT EDIT : 2019 |d 2021-01-30 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-30 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2021-01-30 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-30 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-30 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-30 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-30 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|