% IMPORTANT: The following is UTF-8 encoded. This means that in the presence % of non-ASCII characters, it will not work with BibTeX 0.99 or older. % Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or % “biber”. @ARTICLE{Aartsen:458214, author = {Aartsen, M. G. and Abbasi, R. and Ackermann, M. and Adams, J. and Aguilar, J. A. and Ahlers, M. and Ahrens, M. and Alispach, C. and Allison, P. and Amin, N. M. and Andeen, K. and Anderson, T. and Ansseau, I. and Anton, G. and Argüelles, C. and Arlen, T. C. and Auffenberg, J. and Axani, S. and Bagherpour, H. and Bai, X. and Balagopal, A., V. and Barbano, A. and Bartos, I. and Bastian-Querner, Benjamin and Basu, V. and Baum, V. and Baur, S. and Bay, R. and Beatty, J. J. and Becker, K.-H. and Becker Tjus, J. and BenZvi, S. and Berley, D. and Bernardini, E. and Besson, D. Z. and Binder, G. and Bindig, D. and Blaufuss, E. and Blot, S. and Bohm, C. and Bohmer, M. and Böser, S. and Botner, O. and Böttcher, J. and Bourbeau, E. and Bourbeau, J. and Bradascio, Federica and Braun, J. and Bron, S. and Brostean-Kaiser, Jannes and Burgman, A. and Burley, R. T. and Buscher, J. and Busse, R. S. and Bustamante, M. and Campana, M. A. and Carnie-Bronca, E. G. and Carver, T. and Chen, C. and Chen, P. and Cheung, E. and Chirkin, D. and Choi, S. and Clark, B. A. and Clark, K. and Classen, L. and Coleman, A. and Collin, G. H. and Connolly, A. and Conrad, J. M. and Coppin, P. and Correa, P. and Cowen, D. F. and Cross, R. and Dave, P. and Deaconu, C. and De Clercq, C. and DeLaunay, J. J. and De Kockere, S. and Dembinski, H. and Deoskar, K. and De Ridder, S. and Desai, A. and Desiati, P. and de Vries, K. D. and de Wasseige, G. and de With, M. and DeYoung, T. and Dharani, S. and Diaz, A. and Díaz-Vélez, J. C. and Dujmovic, H. and Dunkman, M. and DuVernois, M. A. and Dvorak, E. and Ehrhardt, T. and Eller, P. and Engel, R. and Evans, J. J. and Evenson, P. A. and Fahey, S. and Farrag, K. and Fazely, A. R. and Felde, J. and Fienberg, A. T. and Filimonov, K. and Finley, C. and Fischer, L. and Fox, D. and Franckowiak, A. and Friedman, E. and Fritz, A. and Gaisser, T. K. and Gallagher, J. and Ganster, E. and Garcia-Fernandez, D. and Garrappa, Simone and Gartner, A. and Gerhardt, L. and Gernhaeuser, R. and Ghadimi, A. and Glaser, C. and Glauch, T. and Glüsenkamp, T. and Goldschmidt, A. and Gonzalez, J. G. and Goswami, S. and Grant, D. and Grégoire, T. and Griffith, Z. and Griswold, S. and Gündüz, M. and Haack, C. and Hallgren, A. and Halliday, R. and Halve, L. and Halzen, F. and Hanson, J. C. and Hanson, K. and Hardin, J. and Haugen, J. and Haungs, A. and Hauser, S. and Hebecker, D. and Heinen, D. and Heix, P. and Helbing, K. and Hellauer, R. and Henningsen, F. and Hickford, S. and Hignight, J. and Hill, C. and Hill, G. C. and Hoffman, K. D. and Hoffmann, B. and Hoffmann, R. and Hoinka, T. and Hokanson-Fasig, B. and Holzapfel, K. and Hoshina, K. and Huang, F. and Huber, M. and Huber, T. and Huege, T. and Hughes, K. and Hultqvist, K. and Hünnefeld, M. and Hussain, R. and In, S. and Iovine, N. and Ishihara, A. and Jansson, M. and Japaridze, G. S. and Jeong, M. and Jones, B. J. P. and Jonske, F. and Joppe, R. and Kalekin, O. and Kang, D. and Kang, W. and Kang, X. and Kappes, A. and Kappesser, D. and Karg, T. and Karl, M. and Karle, A. and Katori, T. and Katz, U. and Kauer, M. and Keivani, A. and Kellermann, M. and Kelley, J. L. and Kheirandish, A. and Kim, J. and Kin, K. and Kintscher, T. and Kiryluk, J. and Kittler, T. and Kleifges, M. and Klein, S. R. and Koirala, R. and Kolanoski, H. and Köpke, L. and Kopper, C. and Kopper, S. and Koskinen, D. J. and Koundal, P. and Kovacevich, M. and Kowalski, M. and Krauss, C. B. and Krings, K. and Krückl, G. and Kulacz, N. and Kurahashi, N. and Lagunas Gualda, C. and Lahmann, R. and Lanfranchi, J. L. and Larson, M. J. and Latif, U. and Lauber, F. and Lazar, J. P. and Leonard, K. and Leszczyńska, A. and Li, Y. and Liu, Q. R. and Lohfink, E. and LoSecco, J. and Lozano Mariscal, C. J. and Lu, L. and Lucarelli, F. and Ludwig, A. and Lünemann, J. and Luszczak, W. and Lyu, Y. and Ma, Wing Yan and Madsen, J. and Maggi, G. and Mahn, K. B. M. and Makino, Y. and Mallik, P. and Mancina, S. and Mandalia, S. and Mariş, I. C. and Marka, S. and Marka, Z. and Maruyama, R. and Mase, K. and Maunu, R. and McNally, F. and Meagher, K. and Medina, A. and Meier, M. and Meighen-Berger, S. and Merz, J. and Meyers, Zachary Samuel and Micallef, J. and Mockler, D. and Momenté, G. and Montaruli, T. and Moore, R. W. and Morse, R. and Moulai, M. and Muth, P. and Naab, R. and Nagai, R. and Nam, J. and Naumann, U. and Necker, J. and Neer, G. and Nelles, A. and Nguỹ̂ and Niederhausen, H. and Nisa, M. U. and Nowicki, S. C. and Nygren, D. R. and Oberla, E. and Obertacke Pollmann, A. and Oehler, M. and Olivas, A. and O'Sullivan, E. and Pan, Y. and Pandya, H. and Pankova, D. V. and Papp, L. and Park, N. and Parker, G. K. and Paudel, E. N. and Peiffer, P. and Pérez de los Heros, C. and Petersen, T. C. and Philippen, S. and Pieloth, D. and Pieper, S. and Pinfold, J. L. and Pizzuto, A. and Plaisier, Ilse and Plum, M. and Popovych, Y. and Porcelli, A. and Prado Rodriguez, M. and Price, P. B. and Przybylski, G. T. and Raab, C. and Raissi, A. and Rameez, M. and Rauch, Franz Ludwig and Rawlins, K. and Rea, I. C. and Rehman, A. and Reimann, R. and Renschler, M. and Renzi, G. and Resconi, E. and Reusch, S. and Rhode, W. and Richman, M. and Riedel, B. and Riegel, M. and Roberts, E. J. and Robertson, S. and Roellinghoff, G. and Rongen, M. and Rott, C. and Ruhe, T. and Ryckbosch, D. and Rysewyk Cantu, D. and Safa, I. and Sanchez Herrera, S. E. and Sandrock, A. and Sandroos, J. and Sandstrom, P. and Santander, M. and Sarkar, S. and Sarkar, S. and Satalecka, K. and Scharf, M. and Schaufel, M. and Schieler, H. and Schlunder, P. and Schmidt, T. and Schneider, A. and Schneider, J. and Schröder, F. G. and Schumacher, L. and Sclafani, S. and Seckel, D. and Seunarine, S. and Shaevitz, M. H. and Sharma, A. and Shefali, S. and Silva, M. and Smith, D. and Smithers, B. and Snihur, R. and Soedingrekso, J. and Soldin, D. and Söldner-Rembold, S. and Song, M. and Southall, D. and Spiczak, G. M. and Spiering, C. and Stachurska, Juliana and Stamatikos, M. and Stanev, T. and Stein, Robert and Stettner, J. and Steuer, A. and Stezelberger, T. and Stokstad, R. G. and Strotjohann, Nora Linn and Stürwald, T. and Stuttard, T. and Sullivan, G. W. and Taboada, I. and Taketa, A. and Tanaka, H. K. M. and Tenholt, F. and Ter-Antonyan, S. and Terliuk, Andrii and Tilav, S. and Tollefson, K. and Tomankova, L. and Tönnis, C. and Torres, J. and Toscano, S. and Tosi, D. and Trettin, Alexander and Tselengidou, M. and Tung, C. F. and Turcati, A. and Turcotte, R. and Turley, C. F. and Twagirayezu, J. P. and Ty, B. and Unger, E. and Unland Elorrieta, M. A. and Vandenbroucke, J. and van Eijk, D. and van Eijndhoven, N. and Vannerom, D. and Santen, Jakob van and Veberic, D. and Verpoest, S. and Vieregg, A. and Vraeghe, M. and Walck, C. and Watson, T. B. and Weaver, C. and Weindl, A. and Weinstock, L. and Weiss, M. J. and Weldert, J. and Welling, Christoph and Wendt, C. and Werthebach, J. and Whitehorn, N. and Wiebe, K. and Wiebusch, C. H. and Williams, D. R. and Wissel, S. A. and Wolf, M. and Wood, T. R. and Woschnagg, K. and Wrede, G. and Wren, S. and Wulff, J. and Xu, X. W. and Xu, Y. and Yanez, J. P. and Yoshida, S. and Yuan, T. and Zhang, Z. and Zierke, S. and Zöcklein, M.}, collaboration = {IceCube-{Gen2 Collaboration}}, title = {{I}ce{C}ube-{G}en2: {T}he {W}indow to the {E}xtreme {U}niverse}, journal = {Journal of physics / G}, volume = {48}, number = {6}, issn = {1361-6471}, address = {Bristol}, publisher = {IOP Publ.}, reportid = {PUBDB-2021-02198, arXiv:2008.04323}, pages = {060501}, year = {2021}, note = {56 pages, 29 figures Waiting for fulltext}, abstract = {The observation of electromagnetic radiation from radio to γ-ray wavelengths has provided a wealth of information about the Universe. However, at PeV (1015 eV) energies and above, most of the Universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the Universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. These energetic particles have millions of times higher energies than those produced in the most powerful particle accelerators on Earth. As neutrinos can escape from regions otherwise opaque to radiation, they allow an unique view deep into exploding stars and the vicinity of the event horizons of black holes. The discovery of cosmic neutrinos with IceCube has opened this new window on the Universe. IceCube has been successful in finding first evidence for cosmic particle acceleration in the jet of an active galactic nucleus. Yet, ultimately, its sensitivity is too limited to detect even the brightest neutrino sources with high significance, or to detect populations of less luminous sources. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the processes and environments that govern the Universe at the highest energies. IceCube-Gen2 is designed to: (a) Resolve the high-energy neutrino sky from TeV to EeV energies (b) Investigate cosmic particle acceleration through multi-messenger observations (c) Reveal the sources and propagation of the highest energy particles in the Universe (d) Probe fundamental physics with high-energy neutrinos IceCube-Gen2 will enhance the existing IceCube detector at the South Pole. It will increase the annual rate of observed cosmic neutrinos by a factor of ten compared to IceCube, and will be able to detect sources five times fainter than its predecessor. Furthermore, through the addition of a radio array, IceCube-Gen2 will extend the energy range by several orders of magnitude compared to IceCube. Construction will take 8 years and cost about $350M. The goal is to have IceCube-Gen2 fully operational by 2033. IceCube-Gen2 will play an essential role in shaping the new era of multi-messenger astronomy, fundamentally advancing our knowledge of the high-energy Universe. This challenging mission can be fully addressed only through the combination of the information from the neutrino, electromagnetic, and gravitational wave emission of high-energy sources, in concert with the new survey instruments across the electromagnetic spectrum and gravitational wave detectors which will be available in the coming years.}, keywords = {particle: energy (INSPIRE) / gravitation: energy (INSPIRE) / radiation: electromagnetic (INSPIRE) / particle: acceleration (INSPIRE) / IceCube (INSPIRE) / gravitational radiation detector (INSPIRE) / cosmic radiation (INSPIRE) / neutron star (INSPIRE) / propagation (INSPIRE) / black hole (INSPIRE) / gamma ray (INSPIRE) / radio wave (INSPIRE) / messenger (INSPIRE) / photon (INSPIRE) / costs (INSPIRE)}, cin = {ZEU-ICE}, ddc = {530}, cid = {I:(DE-H253)ZEU-ICE-20160806}, pnm = {613 - Matter and Radiation from the Universe (POF4-613)}, pid = {G:(DE-HGF)POF4-613}, experiment = {EXP:(DE-H253)IceCube-20150101}, typ = {PUB:(DE-HGF)16}, eprint = {2008.04323}, howpublished = {arXiv:2008.04323}, archivePrefix = {arXiv}, SLACcitation = {$\%\%CITATION$ = $arXiv:2008.04323;\%\%$}, UT = {WOS:000645585200001}, doi = {10.1088/1361-6471/abbd48}, url = {https://bib-pubdb1.desy.de/record/458214}, }