% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@ARTICLE{Aartsen:458214,
author = {Aartsen, M. G. and Abbasi, R. and Ackermann, M. and Adams,
J. and Aguilar, J. A. and Ahlers, M. and Ahrens, M. and
Alispach, C. and Allison, P. and Amin, N. M. and Andeen, K.
and Anderson, T. and Ansseau, I. and Anton, G. and
Argüelles, C. and Arlen, T. C. and Auffenberg, J. and
Axani, S. and Bagherpour, H. and Bai, X. and Balagopal, A.,
V. and Barbano, A. and Bartos, I. and Bastian-Querner,
Benjamin and Basu, V. and Baum, V. and Baur, S. and Bay, R.
and Beatty, J. J. and Becker, K.-H. and Becker Tjus, J. and
BenZvi, S. and Berley, D. and Bernardini, E. and Besson, D.
Z. and Binder, G. and Bindig, D. and Blaufuss, E. and Blot,
S. and Bohm, C. and Bohmer, M. and Böser, S. and Botner, O.
and Böttcher, J. and Bourbeau, E. and Bourbeau, J. and
Bradascio, Federica and Braun, J. and Bron, S. and
Brostean-Kaiser, Jannes and Burgman, A. and Burley, R. T.
and Buscher, J. and Busse, R. S. and Bustamante, M. and
Campana, M. A. and Carnie-Bronca, E. G. and Carver, T. and
Chen, C. and Chen, P. and Cheung, E. and Chirkin, D. and
Choi, S. and Clark, B. A. and Clark, K. and Classen, L. and
Coleman, A. and Collin, G. H. and Connolly, A. and Conrad,
J. M. and Coppin, P. and Correa, P. and Cowen, D. F. and
Cross, R. and Dave, P. and Deaconu, C. and De Clercq, C. and
DeLaunay, J. J. and De Kockere, S. and Dembinski, H. and
Deoskar, K. and De Ridder, S. and Desai, A. and Desiati, P.
and de Vries, K. D. and de Wasseige, G. and de With, M. and
DeYoung, T. and Dharani, S. and Diaz, A. and Díaz-Vélez,
J. C. and Dujmovic, H. and Dunkman, M. and DuVernois, M. A.
and Dvorak, E. and Ehrhardt, T. and Eller, P. and Engel, R.
and Evans, J. J. and Evenson, P. A. and Fahey, S. and
Farrag, K. and Fazely, A. R. and Felde, J. and Fienberg, A.
T. and Filimonov, K. and Finley, C. and Fischer, L. and Fox,
D. and Franckowiak, A. and Friedman, E. and Fritz, A. and
Gaisser, T. K. and Gallagher, J. and Ganster, E. and
Garcia-Fernandez, D. and Garrappa, Simone and Gartner, A.
and Gerhardt, L. and Gernhaeuser, R. and Ghadimi, A. and
Glaser, C. and Glauch, T. and Glüsenkamp, T. and
Goldschmidt, A. and Gonzalez, J. G. and Goswami, S. and
Grant, D. and Grégoire, T. and Griffith, Z. and Griswold,
S. and Gündüz, M. and Haack, C. and Hallgren, A. and
Halliday, R. and Halve, L. and Halzen, F. and Hanson, J. C.
and Hanson, K. and Hardin, J. and Haugen, J. and Haungs, A.
and Hauser, S. and Hebecker, D. and Heinen, D. and Heix, P.
and Helbing, K. and Hellauer, R. and Henningsen, F. and
Hickford, S. and Hignight, J. and Hill, C. and Hill, G. C.
and Hoffman, K. D. and Hoffmann, B. and Hoffmann, R. and
Hoinka, T. and Hokanson-Fasig, B. and Holzapfel, K. and
Hoshina, K. and Huang, F. and Huber, M. and Huber, T. and
Huege, T. and Hughes, K. and Hultqvist, K. and Hünnefeld,
M. and Hussain, R. and In, S. and Iovine, N. and Ishihara,
A. and Jansson, M. and Japaridze, G. S. and Jeong, M. and
Jones, B. J. P. and Jonske, F. and Joppe, R. and Kalekin, O.
and Kang, D. and Kang, W. and Kang, X. and Kappes, A. and
Kappesser, D. and Karg, T. and Karl, M. and Karle, A. and
Katori, T. and Katz, U. and Kauer, M. and Keivani, A. and
Kellermann, M. and Kelley, J. L. and Kheirandish, A. and
Kim, J. and Kin, K. and Kintscher, T. and Kiryluk, J. and
Kittler, T. and Kleifges, M. and Klein, S. R. and Koirala,
R. and Kolanoski, H. and Köpke, L. and Kopper, C. and
Kopper, S. and Koskinen, D. J. and Koundal, P. and
Kovacevich, M. and Kowalski, M. and Krauss, C. B. and
Krings, K. and Krückl, G. and Kulacz, N. and Kurahashi, N.
and Lagunas Gualda, C. and Lahmann, R. and Lanfranchi, J. L.
and Larson, M. J. and Latif, U. and Lauber, F. and Lazar, J.
P. and Leonard, K. and Leszczyńska, A. and Li, Y. and Liu,
Q. R. and Lohfink, E. and LoSecco, J. and Lozano Mariscal,
C. J. and Lu, L. and Lucarelli, F. and Ludwig, A. and
Lünemann, J. and Luszczak, W. and Lyu, Y. and Ma, Wing Yan
and Madsen, J. and Maggi, G. and Mahn, K. B. M. and Makino,
Y. and Mallik, P. and Mancina, S. and Mandalia, S. and
Mariş, I. C. and Marka, S. and Marka, Z. and Maruyama, R.
and Mase, K. and Maunu, R. and McNally, F. and Meagher, K.
and Medina, A. and Meier, M. and Meighen-Berger, S. and
Merz, J. and Meyers, Zachary Samuel and Micallef, J. and
Mockler, D. and Momenté, G. and Montaruli, T. and Moore, R.
W. and Morse, R. and Moulai, M. and Muth, P. and Naab, R.
and Nagai, R. and Nam, J. and Naumann, U. and Necker, J. and
Neer, G. and Nelles, A. and Nguỹ̂ and Niederhausen, H.
and Nisa, M. U. and Nowicki, S. C. and Nygren, D. R. and
Oberla, E. and Obertacke Pollmann, A. and Oehler, M. and
Olivas, A. and O'Sullivan, E. and Pan, Y. and Pandya, H. and
Pankova, D. V. and Papp, L. and Park, N. and Parker, G. K.
and Paudel, E. N. and Peiffer, P. and Pérez de los Heros,
C. and Petersen, T. C. and Philippen, S. and Pieloth, D. and
Pieper, S. and Pinfold, J. L. and Pizzuto, A. and Plaisier,
Ilse and Plum, M. and Popovych, Y. and Porcelli, A. and
Prado Rodriguez, M. and Price, P. B. and Przybylski, G. T.
and Raab, C. and Raissi, A. and Rameez, M. and Rauch, Franz
Ludwig and Rawlins, K. and Rea, I. C. and Rehman, A. and
Reimann, R. and Renschler, M. and Renzi, G. and Resconi, E.
and Reusch, S. and Rhode, W. and Richman, M. and Riedel, B.
and Riegel, M. and Roberts, E. J. and Robertson, S. and
Roellinghoff, G. and Rongen, M. and Rott, C. and Ruhe, T.
and Ryckbosch, D. and Rysewyk Cantu, D. and Safa, I. and
Sanchez Herrera, S. E. and Sandrock, A. and Sandroos, J. and
Sandstrom, P. and Santander, M. and Sarkar, S. and Sarkar,
S. and Satalecka, K. and Scharf, M. and Schaufel, M. and
Schieler, H. and Schlunder, P. and Schmidt, T. and
Schneider, A. and Schneider, J. and Schröder, F. G. and
Schumacher, L. and Sclafani, S. and Seckel, D. and
Seunarine, S. and Shaevitz, M. H. and Sharma, A. and
Shefali, S. and Silva, M. and Smith, D. and Smithers, B. and
Snihur, R. and Soedingrekso, J. and Soldin, D. and
Söldner-Rembold, S. and Song, M. and Southall, D. and
Spiczak, G. M. and Spiering, C. and Stachurska, Juliana and
Stamatikos, M. and Stanev, T. and Stein, Robert and
Stettner, J. and Steuer, A. and Stezelberger, T. and
Stokstad, R. G. and Strotjohann, Nora Linn and Stürwald, T.
and Stuttard, T. and Sullivan, G. W. and Taboada, I. and
Taketa, A. and Tanaka, H. K. M. and Tenholt, F. and
Ter-Antonyan, S. and Terliuk, Andrii and Tilav, S. and
Tollefson, K. and Tomankova, L. and Tönnis, C. and Torres,
J. and Toscano, S. and Tosi, D. and Trettin, Alexander and
Tselengidou, M. and Tung, C. F. and Turcati, A. and
Turcotte, R. and Turley, C. F. and Twagirayezu, J. P. and
Ty, B. and Unger, E. and Unland Elorrieta, M. A. and
Vandenbroucke, J. and van Eijk, D. and van Eijndhoven, N.
and Vannerom, D. and Santen, Jakob van and Veberic, D. and
Verpoest, S. and Vieregg, A. and Vraeghe, M. and Walck, C.
and Watson, T. B. and Weaver, C. and Weindl, A. and
Weinstock, L. and Weiss, M. J. and Weldert, J. and Welling,
Christoph and Wendt, C. and Werthebach, J. and Whitehorn, N.
and Wiebe, K. and Wiebusch, C. H. and Williams, D. R. and
Wissel, S. A. and Wolf, M. and Wood, T. R. and Woschnagg, K.
and Wrede, G. and Wren, S. and Wulff, J. and Xu, X. W. and
Xu, Y. and Yanez, J. P. and Yoshida, S. and Yuan, T. and
Zhang, Z. and Zierke, S. and Zöcklein, M.},
collaboration = {IceCube-{Gen2 Collaboration}},
title = {{I}ce{C}ube-{G}en2: {T}he {W}indow to the {E}xtreme
{U}niverse},
journal = {Journal of physics / G},
volume = {48},
number = {6},
issn = {1361-6471},
address = {Bristol},
publisher = {IOP Publ.},
reportid = {PUBDB-2021-02198, arXiv:2008.04323},
pages = {060501},
year = {2021},
note = {56 pages, 29 figures Waiting for fulltext},
abstract = {The observation of electromagnetic radiation from radio to
γ-ray wavelengths has provided a wealth of information
about the Universe. However, at PeV (1015 eV) energies and
above, most of the Universe is impenetrable to photons. New
messengers, namely cosmic neutrinos, are needed to explore
the most extreme environments of the Universe where black
holes, neutron stars, and stellar explosions transform
gravitational energy into non-thermal cosmic rays. These
energetic particles have millions of times higher energies
than those produced in the most powerful particle
accelerators on Earth. As neutrinos can escape from regions
otherwise opaque to radiation, they allow an unique view
deep into exploding stars and the vicinity of the event
horizons of black holes. The discovery of cosmic neutrinos
with IceCube has opened this new window on the Universe.
IceCube has been successful in finding first evidence for
cosmic particle acceleration in the jet of an active
galactic nucleus. Yet, ultimately, its sensitivity is too
limited to detect even the brightest neutrino sources with
high significance, or to detect populations of less luminous
sources. In this white paper, we present an overview of a
next-generation instrument, IceCube-Gen2, which will sharpen
our understanding of the processes and environments that
govern the Universe at the highest energies. IceCube-Gen2 is
designed to: (a) Resolve the high-energy neutrino sky from
TeV to EeV energies (b) Investigate cosmic particle
acceleration through multi-messenger observations (c) Reveal
the sources and propagation of the highest energy particles
in the Universe (d) Probe fundamental physics with
high-energy neutrinos IceCube-Gen2 will enhance the existing
IceCube detector at the South Pole. It will increase the
annual rate of observed cosmic neutrinos by a factor of ten
compared to IceCube, and will be able to detect sources five
times fainter than its predecessor. Furthermore, through the
addition of a radio array, IceCube-Gen2 will extend the
energy range by several orders of magnitude compared to
IceCube. Construction will take 8 years and cost about
$350M. The goal is to have IceCube-Gen2 fully operational by
2033. IceCube-Gen2 will play an essential role in shaping
the new era of multi-messenger astronomy, fundamentally
advancing our knowledge of the high-energy Universe. This
challenging mission can be fully addressed only through the
combination of the information from the neutrino,
electromagnetic, and gravitational wave emission of
high-energy sources, in concert with the new survey
instruments across the electromagnetic spectrum and
gravitational wave detectors which will be available in the
coming years.},
keywords = {particle: energy (INSPIRE) / gravitation: energy (INSPIRE)
/ radiation: electromagnetic (INSPIRE) / particle:
acceleration (INSPIRE) / IceCube (INSPIRE) / gravitational
radiation detector (INSPIRE) / cosmic radiation (INSPIRE) /
neutron star (INSPIRE) / propagation (INSPIRE) / black hole
(INSPIRE) / gamma ray (INSPIRE) / radio wave (INSPIRE) /
messenger (INSPIRE) / photon (INSPIRE) / costs (INSPIRE)},
cin = {ZEU-ICE},
ddc = {530},
cid = {I:(DE-H253)ZEU-ICE-20160806},
pnm = {613 - Matter and Radiation from the Universe (POF4-613)},
pid = {G:(DE-HGF)POF4-613},
experiment = {EXP:(DE-H253)IceCube-20150101},
typ = {PUB:(DE-HGF)16},
eprint = {2008.04323},
howpublished = {arXiv:2008.04323},
archivePrefix = {arXiv},
SLACcitation = {$\%\%CITATION$ = $arXiv:2008.04323;\%\%$},
UT = {WOS:000645585200001},
doi = {10.1088/1361-6471/abbd48},
url = {https://bib-pubdb1.desy.de/record/458214},
}