% IMPORTANT: The following is UTF-8 encoded.  This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.

@ARTICLE{Zak:458204,
      author       = {Zak, Emil J. and Yachmenev, Andrey and Küpper, Jochen},
      title        = {{C}ontrolling rotation in the molecular-frame with an
                      optical centrifuge},
      journal      = {Physical review research},
      volume       = {3},
      number       = {2},
      issn         = {2643-1564},
      address      = {College Park, MD},
      publisher    = {APS},
      reportid     = {PUBDB-2021-02189, arXiv:2009.04358},
      pages        = {023188},
      year         = {2021},
      abstract     = {We computationally demonstrate a new method for coherently
                      controlling the rotation-axis direction in asymmetric top
                      molecules with an optical centrifuge. Appropriately chosen
                      electric-field strengths and the centrifuge's acceleration
                      rate allow to generate a nearly arbitrary rotational
                      wavepacket. For D$_2$S and 2H-imidazole (C$_3$H$_4$N$_2$) we
                      created wavepackets at large values of the rotational
                      quantum number $J$ with the desired projections of the total
                      angular momentum onto two of the molecules' principal axes
                      of inertia. One application of the new method is
                      three-dimensional alignment with a molecular axis aligned
                      along the laser's wave vector, which is important for the
                      three-dimensional imaging of molecules yet not accessible in
                      standard approaches. The simultaneous orientation of the
                      angular momentum in the laboratory frame and in the
                      molecular frame could also be used in robust control of
                      scattering experiments.},
      cin          = {FS-CFEL-CMI / UNI/CUI / UNI/EXP},
      ddc          = {530},
      cid          = {I:(DE-H253)FS-CFEL-CMI-20220405 /
                      $I:(DE-H253)UNI_CUI-20121230$ /
                      $I:(DE-H253)UNI_EXP-20120731$},
      pnm          = {631 - Matter – Dynamics, Mechanisms and Control
                      (POF4-631) / DFG project 281310165 - Abbildung chemischer
                      Dynamik mittels laserinduzierter Elektronenbeugung im
                      Molekülkoordinatensystem (281310165) / DFG project
                      390715994 - EXC 2056: CUI: Advanced Imaging of Matter
                      (390715994) / DFG project 194651731 - EXC 1074: Hamburger
                      Zentrum für ultraschnelle Beobachtung (CUI): Struktur,
                      Dynamik und Kontrolle von Materie auf atomarer Skala
                      (194651731) / Ex-Net-0002-Phase2-3 - Advanced Imaging of
                      Matter: Structure, Dynamics and Control on the Atomic Scale
                      - AIM $(2018_Ex-Net-0002-Phase2-3)$},
      pid          = {G:(DE-HGF)POF4-631 / G:(GEPRIS)281310165 /
                      G:(GEPRIS)390715994 / G:(GEPRIS)194651731 /
                      $G:(DE-HGF)2018_Ex-Net-0002-Phase2-3$},
      experiment   = {EXP:(DE-MLZ)NOSPEC-20140101},
      typ          = {PUB:(DE-HGF)16},
      eprint       = {2009.04358},
      howpublished = {arXiv:2009.04358},
      archivePrefix = {arXiv},
      SLACcitation = {$\%\%CITATION$ = $arXiv:2009.04358;\%\%$},
      UT           = {WOS:000662072100002},
      doi          = {10.1103/PhysRevResearch.3.023188},
      url          = {https://bib-pubdb1.desy.de/record/458204},
}