000457867 001__ 457867
000457867 005__ 20250716150419.0
000457867 0247_ $$2doi$$a10.1039/D1CP00898F
000457867 0247_ $$2ISSN$$a1463-9076
000457867 0247_ $$2ISSN$$a1463-9084
000457867 0247_ $$2datacite_doi$$a10.3204/PUBDB-2021-02153
000457867 0247_ $$2pmid$$apmid:33870387
000457867 0247_ $$2WOS$$aWOS:000640982600001
000457867 0247_ $$2openalex$$aopenalex:W3145862210
000457867 037__ $$aPUBDB-2021-02153
000457867 041__ $$aEnglish
000457867 082__ $$a540
000457867 1001_ $$0P:(DE-H253)PIP1082744$$aLoru, Donatella$$b0$$eCorresponding author
000457867 245__ $$aHow does the composition of a PAH influence its microsolvation? A rotational spectroscopy study of the phenanthrene–water and phenanthridine–water clusters
000457867 260__ $$aCambridge$$bRSC Publ.$$c2021
000457867 3367_ $$2DRIVER$$aarticle
000457867 3367_ $$2DataCite$$aOutput Types/Journal article
000457867 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1620748447_32560
000457867 3367_ $$2BibTeX$$aARTICLE
000457867 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000457867 3367_ $$00$$2EndNote$$aJournal Article
000457867 520__ $$aWe report on the noncovalent intermolecular interactions established between the polycyclic aromatic hydrocarbons phenanthrene and phenanthridine with water. Such noncovalent interactions involving extended aromatic systems and water molecules are ubiquitous in a variety of chemical and biological systems. Our study provides spectroscopic results on simple model systems to understand the impact that an extended aromatic surface and the presence of a heteroatom have on the nature of the noncovalent interactions established with the solvent. Microhydrated phenanthrene and phenanthridine clusters with up to three water molecules have been observed and unambiguously characterised by means of broadband rotational spectroscopy and quantum chemical calculations. The presence of a nitrogen atom in the backbone of phenanthridine remarkably affects the geometries of the water clusters and the interaction networks at play, with O–H⋯N and C–H⋯O interactions becoming preferred in the phenanthridine–water clusters over the O–H⋯π interactions seen in the phenanthrene–water clusters. The presence of this heteroatom induces nuclear quadrupole coupling, which was used to understand the cooperativity effects found with increasing cluster size. Our results provide important insight to draw a more complete picture of the noncovalent interactions involving solvent molecules and aromatic systems larger than benzene, and they can be significant to enhance our understanding of the aromatic–polar interactions at play in a myriad of chemical and biological contexts.
000457867 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0
000457867 536__ $$0G:(EU-Grant)638027$$aASTROROT - Unraveling interstellar chemistry with broadband microwave spectroscopy and next-generation telescope arrays (638027)$$c638027$$fERC-2014-STG$$x1
000457867 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000457867 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000457867 7001_ $$0P:(DE-H253)PIP1023834$$aSteber, Amanda L.$$b1
000457867 7001_ $$0P:(DE-H253)PIP1027381$$aPinacho Morante, Pablo$$b2
000457867 7001_ $$0P:(DE-HGF)0$$aGruet, Sébastien$$b3
000457867 7001_ $$00000-0002-5286-1983$$aTemelso, Berhane$$b4
000457867 7001_ $$0P:(DE-HGF)0$$aRijs, Anouk M.$$b5
000457867 7001_ $$0P:(DE-H253)PIP1023832$$aPérez, Cristóbal$$b6
000457867 7001_ $$0P:(DE-H253)PIP1013514$$aSchnell, Melanie$$b7
000457867 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D1CP00898F$$gVol. 23, no. 16, p. 9721 - 9732$$n16$$p9721 - 9732$$tPhysical chemistry, chemical physics$$v23$$x1463-9084$$y2021
000457867 8564_ $$uhttps://bib-pubdb1.desy.de/record/457867/files/PCCP_version.pdf$$yRestricted
000457867 8564_ $$uhttps://bib-pubdb1.desy.de/record/457867/files/Post-Referee%20version.doc$$yPublished on 2021-02-26. Available in OpenAccess from 2022-02-26.
000457867 8564_ $$uhttps://bib-pubdb1.desy.de/record/457867/files/Post-Referee%20version.docx$$yPublished on 2021-02-26. Available in OpenAccess from 2022-02-26.
000457867 8564_ $$uhttps://bib-pubdb1.desy.de/record/457867/files/Post-Referee%20version.odt$$yPublished on 2021-02-26. Available in OpenAccess from 2022-02-26.
000457867 8564_ $$uhttps://bib-pubdb1.desy.de/record/457867/files/Post-Referee%20version.pdf$$yPublished on 2021-02-26. Available in OpenAccess from 2022-02-26.
000457867 8564_ $$uhttps://bib-pubdb1.desy.de/record/457867/files/PCCP_version.pdf?subformat=pdfa$$xpdfa$$yRestricted
000457867 909CO $$ooai:bib-pubdb1.desy.de:457867$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000457867 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1082744$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000457867 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1082744$$aCentre for Free-Electron Laser Science$$b0$$kCFEL
000457867 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1023834$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000457867 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1023834$$aCentre for Free-Electron Laser Science$$b1$$kCFEL
000457867 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1027381$$aExternal Institute$$b2$$kExtern
000457867 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1027381$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000457867 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-HGF)0$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000457867 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1023832$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000457867 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1023832$$aCentre for Free-Electron Laser Science$$b6$$kCFEL
000457867 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013514$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000457867 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1013514$$aCentre for Free-Electron Laser Science$$b7$$kCFEL
000457867 9130_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6211$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000457867 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMatter – Dynamics, Mechanisms and Control$$x0
000457867 9141_ $$y2021
000457867 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000457867 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000457867 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000457867 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000457867 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000457867 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000457867 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000457867 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-01-28$$wger
000457867 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2019$$d2021-01-28
000457867 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-28$$wger
000457867 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000457867 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000457867 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000457867 9201_ $$0I:(DE-H253)FS-SMP-20171124$$kFS-SMP$$lSpectroscopy of molecular processes$$x0
000457867 9201_ $$0I:(DE-H253)CFEL-SDCCM-20160915$$kCFEL-SDCCM$$lMPSD$$x1
000457867 980__ $$ajournal
000457867 980__ $$aVDB
000457867 980__ $$aUNRESTRICTED
000457867 980__ $$aI:(DE-H253)FS-SMP-20171124
000457867 980__ $$aI:(DE-H253)CFEL-SDCCM-20160915
000457867 9801_ $$aFullTexts