000457860 001__ 457860
000457860 005__ 20230214113356.0
000457860 0247_ $$2INSPIRETeX$$aFuncke:2020olv
000457860 0247_ $$2inspire$$ainspire:1805462
000457860 0247_ $$2arXiv$$aarXiv:2007.03663
000457860 0247_ $$2datacite_doi$$a10.3204/PUBDB-2021-02146
000457860 037__ $$aPUBDB-2021-02146
000457860 041__ $$aEnglish
000457860 088__ $$2arXiv$$aarXiv:2007.03663
000457860 088__ $$2Other$$aHU-EP-20/15
000457860 088__ $$2DESY$$aDESY-20-147
000457860 1001_ $$0P:(DE-HGF)0$$aFuncke, Lena$$b0
000457860 245__ $$aMeasurement Error Mitigation in Quantum Computers Through Classical Bit-Flip Correction
000457860 260__ $$c2020
000457860 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1633363321_11824
000457860 3367_ $$2ORCID$$aWORKING_PAPER
000457860 3367_ $$028$$2EndNote$$aElectronic Article
000457860 3367_ $$2DRIVER$$apreprint
000457860 3367_ $$2BibTeX$$aARTICLE
000457860 3367_ $$2DataCite$$aOutput Types/Working Paper
000457860 500__ $$a31 pages, 13 figures
000457860 520__ $$aWe develop a classical bit-flip correction method to mitigate measurement errors on quantum computers. This method can be applied to any operator, any number of qubits, and any realistic bit-flip probability. We first demonstrate the successful performance of this method by correcting the noisy measurements of the ground-state energy of the longitudinal Ising model. We then generalize our results to arbitrary operators and test our method both numerically and experimentally on IBM quantum hardware. As a result, our correction method reduces the measurement error on the quantum hardware by up to one order of magnitude. We finally discuss how to pre-process the method and extend it to other errors sources beyond measurement errors. For local Hamiltonians, the overhead costs are polynomial in the number of qubits, even if multi-qubit correlations are included.
000457860 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000457860 588__ $$aDataset connected to INSPIRE
000457860 650_7 $$2INSPIRE$$acomputer: quantum
000457860 650_7 $$2INSPIRE$$ahardware
000457860 650_7 $$2INSPIRE$$aperformance
000457860 650_7 $$2INSPIRE$$aIsing model
000457860 650_7 $$2INSPIRE$$aqubit
000457860 650_7 $$2INSPIRE$$acorrection: error
000457860 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000457860 7001_ $$0P:(DE-H253)PIP1019423$$aHartung, Tobias$$b1$$udesy
000457860 7001_ $$0P:(DE-H253)PIP1003636$$aJansen, Karl$$b2
000457860 7001_ $$0P:(DE-H253)PIP1086314$$aKuehn, Stefan$$b3
000457860 7001_ $$0P:(DE-H253)PIP1083971$$aStornati, Paolo$$b4
000457860 7001_ $$0P:(DE-HGF)0$$aWang, Xiaoyang$$b5
000457860 773__ $$p1-31
000457860 8564_ $$uhttps://bib-pubdb1.desy.de/record/457860/files/2007.03663v2.pdf$$yOpenAccess
000457860 8564_ $$uhttps://bib-pubdb1.desy.de/record/457860/files/2007.03663v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000457860 909CO $$ooai:bib-pubdb1.desy.de:457860$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000457860 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003636$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000457860 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086314$$aExternal Institute$$b3$$kExtern
000457860 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1083971$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000457860 9101_ $$0I:(DE-588b)214094-9$$6P:(DE-H253)PIP1083971$$aIstituto Nazionale di Fisica Nucleare$$b4$$kINFN
000457860 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000457860 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000457860 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished
000457860 9201_ $$0I:(DE-H253)ZEU-NIC-20120731$$kZEU-NIC$$lNIC$$x0
000457860 980__ $$apreprint
000457860 980__ $$aVDB
000457860 980__ $$aUNRESTRICTED
000457860 980__ $$aI:(DE-H253)ZEU-NIC-20120731
000457860 9801_ $$aFullTexts