000457180 001__ 457180
000457180 005__ 20250724175407.0
000457180 0247_ $$2doi$$a10.1038/s41586-021-03517-z
000457180 0247_ $$2datacite_doi$$a10.3204/PUBDB-2021-01909
000457180 0247_ $$2altmetric$$aaltmetric:105758676
000457180 0247_ $$2pmid$$apmid:33981042
000457180 0247_ $$2WOS$$aWOS:000650174400004
000457180 0247_ $$2openalex$$aopenalex:W3163944831
000457180 037__ $$aPUBDB-2021-01909
000457180 041__ $$aEnglish
000457180 082__ $$a500
000457180 1001_ $$0P:(DE-H253)PIP1091458$$aBunduc, Catalin$$b0
000457180 245__ $$aStructure and dynamics of a mycobacterial type VII secretion system
000457180 260__ $$aLondon [u.a.]$$bNature Publ. Group$$c2021
000457180 3367_ $$2DRIVER$$aarticle
000457180 3367_ $$2DataCite$$aOutput Types/Journal article
000457180 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1713278554_2951530
000457180 3367_ $$2BibTeX$$aARTICLE
000457180 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000457180 3367_ $$00$$2EndNote$$aJournal Article
000457180 500__ $$aCryo EM
000457180 520__ $$aMycobacterium tuberculosis is the cause of one of the most important infectious diseases in humans, which leads to 1.4 million deaths every year1. Specialized protein transport systems—known as type VII secretion systems (T7SSs)—are central to the virulence of this pathogen, and are also crucial for nutrient and metabolite transport across the mycobacterial cell envelope2,3. Here we present the structure of an intact T7SS inner-membrane complex of M. tuberculosis. We show how the 2.32-MDa ESX-5 assembly, which contains 165 transmembrane helices, is restructured and stabilized as a trimer of dimers by the MycP$_5$ protease. A trimer of MycP$_5$ caps a central periplasmic dome-like chamber that is formed by three EccB$_5$ dimers, with the proteolytic sites of MycP$_5$ facing towards the cavity. This chamber suggests a central secretion and processing conduit. Complexes without MycP$_5$ show disruption of the EccB5 periplasmic assembly and increased flexibility, which highlights the importance of MycP$_5$ for complex integrity. Beneath the EccB$_5$–MycP$_5$ chamber, dimers of the EccC5 ATPase assemble into three bundles of four transmembrane helices each, which together seal the potential central secretion channel. Individual cytoplasmic EccC5 domains adopt two distinctive conformations that probably reflect different secretion states. Our work suggests a previously undescribed mechanism of protein transport and provides a structural scaffold to aid in the development of drugs against this major human pathogen.
000457180 536__ $$0G:(DE-HGF)POF4-633$$a633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)$$cPOF4-633$$fPOF IV$$x0
000457180 536__ $$0G:(EU-Grant)101030373$$aCryoMyco - Atomic dissection of type VII secretion systems from pathogenic mycobacteria (101030373)$$c101030373$$fH2020-MSCA-IF-2020$$x1
000457180 588__ $$aDataset connected to DataCite
000457180 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000457180 7001_ $$0P:(DE-H253)PIP1090672$$aFahrenkamp, Dirk$$b1
000457180 7001_ $$0P:(DE-H253)PIP1083333$$aWald, Jiri$$b2
000457180 7001_ $$0P:(DE-HGF)0$$aUmmels, Roy$$b3
000457180 7001_ $$0P:(DE-HGF)0$$abitter, wilbert$$b4
000457180 7001_ $$0P:(DE-HGF)0$$aHouben, Edith$$b5
000457180 7001_ $$0P:(DE-H253)PIP1021412$$aMarlovits, Thomas$$b6$$eCorresponding author
000457180 773__ $$0PERI:(DE-600)1413423-8$$a10.1038/s41586-021-03517-z$$gVol. 593, no. 7859, p. 445 - 448$$n7859$$p445 - 448$$tNature <London>$$v593$$x0028-0836$$y2021
000457180 8564_ $$uhttps://bib-pubdb1.desy.de/record/457180/files/Scan%2019.08.2021%2C%2015-15.pdf
000457180 8564_ $$uhttps://bib-pubdb1.desy.de/record/457180/files/Scan%2019.08.2021%2C%2015-15.pdf?subformat=pdfa$$xpdfa
000457180 8564_ $$uhttps://bib-pubdb1.desy.de/record/457180/files/s41586-021-03517-z.pdf$$yOpenAccess
000457180 8564_ $$uhttps://bib-pubdb1.desy.de/record/457180/files/s41586-021-03517-z.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000457180 8767_ $$d2021-08-19$$eHybrid-OA$$jDEAL$$lSpringerNature$$zDEALVertrag
000457180 909CO $$ooai:bib-pubdb1.desy.de:457180$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$qOpenAPC
000457180 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1091458$$aCentre for Structural Systems Biology$$b0$$kCSSB
000457180 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1090672$$aCentre for Structural Systems Biology$$b1$$kCSSB
000457180 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1090672$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000457180 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1083333$$aCentre for Structural Systems Biology$$b2$$kCSSB
000457180 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Medical Microbiology and Infection Control, Amsterdam Infection & Immunity Institute, Amsterdam UMC$$b3
000457180 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam$$b4
000457180 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam$$b5
000457180 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1021412$$aCentre for Structural Systems Biology$$b6$$kCSSB
000457180 9131_ $$0G:(DE-HGF)POF4-633$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vLife Sciences – Building Blocks of Life: Structure and Function$$x0
000457180 9141_ $$y2021
000457180 915__ $$0StatID:(DE-HGF)9940$$2StatID$$aIF >= 40$$bNATURE : 2019$$d2021-01-27
000457180 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000457180 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000457180 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-27
000457180 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000457180 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000457180 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-01-27
000457180 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-27
000457180 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNATURE : 2019$$d2021-01-27
000457180 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000457180 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-27
000457180 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2021-01-27
000457180 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000457180 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000457180 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000457180 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000457180 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-27
000457180 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000457180 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000457180 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000457180 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000457180 9201_ $$0I:(DE-H253)FS-PS-20131107$$kFS-PS$$lFS-Photon Science$$x0
000457180 9201_ $$0I:(DE-H253)CSSB-UKE-20141216$$kCSSB-UKE$$lCSSB-UKE$$x1
000457180 980__ $$ajournal
000457180 980__ $$aVDB
000457180 980__ $$aI:(DE-H253)FS-PS-20131107
000457180 980__ $$aI:(DE-H253)CSSB-UKE-20141216
000457180 980__ $$aAPC
000457180 980__ $$aUNRESTRICTED
000457180 9801_ $$aAPC
000457180 9801_ $$aFullTexts