001     456627
005     20250716150808.0
024 7 _ |a 10.1140/epjd/s10053-021-00147-y
|2 doi
024 7 _ |a 1434-6060
|2 ISSN
024 7 _ |a 1434-6079
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2021-01567
|2 datacite_doi
024 7 _ |a WOS:000733023100003
|2 WOS
024 7 _ |2 openalex
|a openalex:W3157640826
037 _ _ |a PUBDB-2021-01567
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Dörner, Simon
|0 P:(DE-H253)PIP1024502
|b 0
|e Corresponding author
245 _ _ |a The influence of the methionine residue on the dissociation mechanisms of photoionized methionine-enkephalin probed by VUV action spectroscopy
260 _ _ |a Heidelberg
|c 2021
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1713278141_2951530
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a VUV action spectroscopy has recently gained interest for the study of peptides and proteins. However, numerous aspects of the fundamental processes involved in the photodissociation are yet to be understood. It can, for example, be expected that sulfur-containing amino-acid residues have a significant impact on the dissociation processes following photoionization because of their potential involvement in the transport of electron holes in proteins. In order to investigate the influence of the sulfur-containing methionine residue on the VUV photodissociation of a small peptide a VUV action spectroscopy study of gas-phase protonated methionine-enkephalin and leucine-enkephalin in the photon energy range of 6–35 eV was performed. The results show that upon non-ionizing photoexcitation, the fragmentation patterns of the two peptides are nearly identical, whereas significant differences were observed upon photoionization. The differences between the fragment yields and the identified specific dissociation channels for methionineenkephalin could be explained by the high electron hole affinity of sulfur, which efficiently directs the radical to the methionine side chain. Additionally, for both peptides the presence of the intact photoionized precursor ions was confirmed by their isotopic patterns and the stability of these species could be evaluated.
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 0
536 _ _ |a VH-NG-1104 - Structure and dynamics of gas-phase biomolecules studied by photon-induced ionization and dissociation (2007_IVF-VH-NG-1104)
|0 G:(DE-HGF)2007_IVF-VH-NG-1104
|c 2007_IVF-VH-NG-1104
|x 1
536 _ _ |a DFG project 28586557 - SFB 755: Photonische Abbildungen auf der Nanometerskala (28586557)
|0 G:(GEPRIS)28586557
|c 28586557
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e Measurement at external facility
|x 0
700 1 _ |a Schwob, Lucas
|0 P:(DE-H253)PIP1033236
|b 1
|e Corresponding author
700 1 _ |a Schubert, Kaja
|0 P:(DE-H253)PIP1021880
|b 2
|e Corresponding author
700 1 _ |a Girod, Marion
|0 P:(DE-HGF)0
|b 3
700 1 _ |a MacAleese, Luke
|0 P:(DE-H253)PIP1087130
|b 4
700 1 _ |a Pieterse, Cornelius Louwrens
|0 P:(DE-H253)PIP1023303
|b 5
700 1 _ |a Schlathoelter, Thomas
|0 P:(DE-H253)PIP1008276
|b 6
700 1 _ |a Techert, Simone
|0 P:(DE-H253)PIP1008775
|b 7
|e Corresponding author
700 1 _ |a Bari, Sadia
|0 P:(DE-H253)PIP1014119
|b 8
|e Corresponding author
770 _ _ |a Spectroscopy of biomolecular ions in vacuo
773 _ _ |a 10.1140/epjd/s10053-021-00147-y
|g Vol. 75, no. 4, p. 142
|0 PERI:(DE-600)1459071-2
|n 4
|p 142
|t The European physical journal / D
|v 75
|y 2021
|x 1434-6060
856 4 _ |u https://bib-pubdb1.desy.de/record/456627/files/Scan%2019.08.2021%2C%2014-07.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/456627/files/Scan%2019.08.2021%2C%2014-07.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/456627/files/Simon%20et%20al.%20-%202021%20-%20The%20influence%20of%20the%20methionine%20residue%20on%20the%20dissociation%20mechanisms%20of%20photoionized%20methionine-enkephalin%20probe.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/456627/files/Simon%20et%20al.%20-%202021%20-%20The%20influence%20of%20the%20methionine%20residue%20on%20the%20dissociation%20mechanisms%20of%20photoionized%20methionine-enkephalin%20probe.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:456627
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
|q OpenAPC
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1024502
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1033236
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1021880
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1087130
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 4
|6 P:(DE-H253)PIP1087130
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1008276
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1008775
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 7
|6 P:(DE-H253)PIP1008775
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1014119
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 0
913 0 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6215
|x 0
914 1 _ |y 2021
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Springer Nature 2020
|0 PC:(DE-HGF)0113
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR PHYS J D : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 1 _ |0 I:(DE-H253)FS-SCS-20131031
|k FS-SCS
|l Strukturdynamik Chemischer Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)FS-SCS-20131031
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21