001     456598
005     20250724175319.0
024 7 _ |a 10.1088/1475-7516/2021/07/028
|2 doi
024 7 _ |a Fiorillo:2021hty
|2 INSPIRETeX
024 7 _ |a inspire:1854762
|2 inspire
024 7 _ |a 1475-7508
|2 ISSN
024 7 _ |a 1475-7516
|2 ISSN
024 7 _ |a arXiv:2103.16577
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2021-01548
|2 datacite_doi
024 7 _ |a altmetric:103077771
|2 altmetric
024 7 _ |a WOS:000683046300029
|2 WOS
024 7 _ |a openalex:W3186643471
|2 openalex
037 _ _ |a PUBDB-2021-01548
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a DESY-21-045
|2 DESY
088 _ _ |a arXiv:2103.16577
|2 arXiv
100 1 _ |a Fiorillo
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Unified thermal model for photohadronic neutrino production in astrophysical sources
260 _ _ |a London
|c 2021
|b IOP
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1628520058_25594
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a JCAP 07 (2021) 028. 38 pages, 13 figures; data available at https://github.com/damianofiorillo/Unified-thermal-model
520 _ _ |a High-energy astrophysical neutrino fluxes are, for many applications, modeled as simple power laws as a function of energy. While this is reasonable in the case of neutrino production in hadronuclear $pp$ sources, it typically does not capture the behavior in photohadronic $p\gamma$ sources: in that case, the neutrino spectrum depends on the properties of the target photons the cosmic rays collide with and on possible magnetic-field effects on the secondary pions and muons. We show that the neutrino production from known photohadronic sources can be reproduced by a thermal (black-body) target-photon spectrum if one suitably adjusts the temperature, thanks to multi-pion production processes. This allows discussing neutrino production from most known $p\gamma$ sources, such as gamma-ray bursts, active galactic nuclei and tidal disruption events, in terms of a few parameters. We apply this thermal model to study the sensitivity of different classes of neutrino telescopes to photohadronic sources: we classify the model parameter space according to which experiment is most suitable for detection of a specific source class and demonstrate that different experiment classes, such as dense arrays, conventional neutrino telescopes, or radio-detection experiments, cover different parts of the parameter space. Since the model can also reproduce the flavor and neutrino-antineutrino composition, we study the impact on the track-to-shower ratio and the Glashow resonance.
536 _ _ |a 613 - Matter and Radiation from the Universe (POF4-613)
|0 G:(DE-HGF)POF4-613
|c POF4-613
|f POF IV
|x 0
536 _ _ |a NEUCOS - Neutrinos and the origin of the cosmic rays (646623)
|0 G:(EU-Grant)646623
|c 646623
|f ERC-2014-CoG
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
650 _ 7 |a neutrino: production
|2 INSPIRE
650 _ 7 |a neutrino: detector
|2 INSPIRE
650 _ 7 |a model: thermal
|2 INSPIRE
650 _ 7 |a neutrino: spectrum
|2 INSPIRE
650 _ 7 |a neutrino: flux
|2 INSPIRE
650 _ 7 |a photon: cosmic radiation
|2 INSPIRE
650 _ 7 |a photon hadron
|2 INSPIRE
650 _ 7 |a magnetic field: effect
|2 INSPIRE
650 _ 7 |a gamma ray: burst
|2 INSPIRE
650 _ 7 |a neutrino antineutrino
|2 INSPIRE
650 _ 7 |a temperature
|2 INSPIRE
650 _ 7 |a sensitivity
|2 INSPIRE
650 _ 7 |a black body
|2 INSPIRE
650 _ 7 |a capture
|2 INSPIRE
650 _ 7 |a flavor
|2 INSPIRE
650 _ 7 |a muon
|2 INSPIRE
650 _ 7 |a AGN
|2 INSPIRE
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Vliet, Arjen René van
|0 P:(DE-H253)PIP1015502
|b 1
|e Corresponding author
700 1 _ |a Morisi, Stefano
|0 P:(DE-H253)PIP1021630
|b 2
|e Corresponding author
700 1 _ |a Winter, Walter
|0 P:(DE-H253)PIP1021242
|b 3
|e Corresponding author
773 _ _ |a 10.1088/1475-7516/2021/07/028
|g Vol. 2021, no. 07, p. 028 -
|0 PERI:(DE-600)2104147-7
|n 07
|p 028 (1-38)
|t Journal of cosmology and astroparticle physics
|v 2021
|y 2021
|x 1475-7508
856 4 _ |u https://bib-pubdb1.desy.de/record/456598/files/UnifiedThermalModelForPhotohadronicNeutrinoProductionInAstrophysicalSources_J._Cosmol._Astropart._Phys._2021_028.pdf
|y Restricted
856 4 _ |y Published on 2021-07-14. Available in OpenAccess from 2022-07-14.
|u https://bib-pubdb1.desy.de/record/456598/files/UnifiedThermalModelForPhotohadronicNeutrinoProductionInAstrophysicalSources_arXiv210316577.pdf
856 4 _ |y Published on 2021-07-14. Available in OpenAccess from 2022-07-14.
|x pdfa
|u https://bib-pubdb1.desy.de/record/456598/files/UnifiedThermalModelForPhotohadronicNeutrinoProductionInAstrophysicalSources_arXiv210316577.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/456598/files/UnifiedThermalModelForPhotohadronicNeutrinoProductionInAstrophysicalSources_J._Cosmol._Astropart._Phys._2021_028.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:456598
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Universitá degli studi di Napoli
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Istituto Nazionale di Fisica Nucleare
|0 I:(DE-588b)214094-9
|k INFN
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1015502
910 1 _ |a Universitá degli studi di Napoli
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-H253)PIP1021630
910 1 _ |a Istituto Nazionale di Fisica Nucleare
|0 I:(DE-588b)214094-9
|k INFN
|b 2
|6 P:(DE-H253)PIP1021630
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1021242
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-613
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter and Radiation from the Universe
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-613
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter and Radiation from the Universe
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J COSMOL ASTROPART P : 2019
|d 2021-01-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J COSMOL ASTROPART P : 2019
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 1 _ |0 I:(DE-H253)Z_THAT-20210408
|k Z_THAT
|l Theoretische Astroteilchenphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)Z_THAT-20210408
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21