000456598 001__ 456598
000456598 005__ 20250724175319.0
000456598 0247_ $$2doi$$a10.1088/1475-7516/2021/07/028
000456598 0247_ $$2INSPIRETeX$$aFiorillo:2021hty
000456598 0247_ $$2inspire$$ainspire:1854762
000456598 0247_ $$2ISSN$$a1475-7508
000456598 0247_ $$2ISSN$$a1475-7516
000456598 0247_ $$2arXiv$$aarXiv:2103.16577
000456598 0247_ $$2datacite_doi$$a10.3204/PUBDB-2021-01548
000456598 0247_ $$2altmetric$$aaltmetric:103077771
000456598 0247_ $$2WOS$$aWOS:000683046300029
000456598 0247_ $$2openalex$$aopenalex:W3186643471
000456598 037__ $$aPUBDB-2021-01548
000456598 041__ $$aEnglish
000456598 082__ $$a530
000456598 088__ $$2DESY$$aDESY-21-045
000456598 088__ $$2arXiv$$aarXiv:2103.16577
000456598 1001_ $$0P:(DE-HGF)0$$aFiorillo$$b0$$eCorresponding author
000456598 245__ $$aUnified thermal model for photohadronic neutrino production in astrophysical sources
000456598 260__ $$aLondon$$bIOP$$c2021
000456598 3367_ $$2DRIVER$$aarticle
000456598 3367_ $$2DataCite$$aOutput Types/Journal article
000456598 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1628520058_25594
000456598 3367_ $$2BibTeX$$aARTICLE
000456598 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000456598 3367_ $$00$$2EndNote$$aJournal Article
000456598 500__ $$aJCAP 07 (2021) 028. 38 pages, 13 figures; data available at https://github.com/damianofiorillo/Unified-thermal-model
000456598 520__ $$aHigh-energy astrophysical neutrino fluxes are, for many applications, modeled as simple power laws as a function of energy. While this is reasonable in the case of neutrino production in hadronuclear $pp$ sources, it typically does not capture the behavior in photohadronic $p\gamma$ sources: in that case, the neutrino spectrum depends on the properties of the target photons the cosmic rays collide with and on possible magnetic-field effects on the secondary pions and muons. We show that the neutrino production from known photohadronic sources can be reproduced by a thermal (black-body) target-photon spectrum if one suitably adjusts the temperature,  thanks to multi-pion production processes. This allows discussing neutrino production from most known $p\gamma$ sources, such as gamma-ray bursts, active galactic nuclei and tidal disruption events, in terms of a few parameters. We apply this thermal model to study the sensitivity of different classes of neutrino telescopes to photohadronic sources: we classify the model parameter space according to which experiment is most suitable for detection of a specific source class and demonstrate that different experiment classes, such as dense arrays, conventional neutrino telescopes, or radio-detection experiments, cover different parts of the parameter space. Since the model can also reproduce the flavor and neutrino-antineutrino composition, we study the impact on the track-to-shower ratio and the Glashow resonance.
000456598 536__ $$0G:(DE-HGF)POF4-613$$a613 - Matter and Radiation from the Universe (POF4-613)$$cPOF4-613$$fPOF IV$$x0
000456598 536__ $$0G:(EU-Grant)646623$$aNEUCOS - Neutrinos and the origin of the cosmic rays (646623)$$c646623$$fERC-2014-CoG$$x1
000456598 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000456598 650_7 $$2INSPIRE$$aneutrino: production
000456598 650_7 $$2INSPIRE$$aneutrino: detector
000456598 650_7 $$2INSPIRE$$amodel: thermal
000456598 650_7 $$2INSPIRE$$aneutrino: spectrum
000456598 650_7 $$2INSPIRE$$aneutrino: flux
000456598 650_7 $$2INSPIRE$$aphoton: cosmic radiation
000456598 650_7 $$2INSPIRE$$aphoton hadron
000456598 650_7 $$2INSPIRE$$amagnetic field: effect
000456598 650_7 $$2INSPIRE$$agamma ray: burst
000456598 650_7 $$2INSPIRE$$aneutrino antineutrino
000456598 650_7 $$2INSPIRE$$atemperature
000456598 650_7 $$2INSPIRE$$asensitivity
000456598 650_7 $$2INSPIRE$$ablack body
000456598 650_7 $$2INSPIRE$$acapture
000456598 650_7 $$2INSPIRE$$aflavor
000456598 650_7 $$2INSPIRE$$amuon
000456598 650_7 $$2INSPIRE$$aAGN
000456598 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000456598 7001_ $$0P:(DE-H253)PIP1015502$$aVliet, Arjen René van$$b1$$eCorresponding author
000456598 7001_ $$0P:(DE-H253)PIP1021630$$aMorisi, Stefano$$b2$$eCorresponding author
000456598 7001_ $$0P:(DE-H253)PIP1021242$$aWinter, Walter$$b3$$eCorresponding author
000456598 773__ $$0PERI:(DE-600)2104147-7$$a10.1088/1475-7516/2021/07/028$$gVol. 2021, no. 07, p. 028 -$$n07$$p028 (1-38)$$tJournal of cosmology and astroparticle physics$$v2021$$x1475-7508$$y2021
000456598 8564_ $$uhttps://bib-pubdb1.desy.de/record/456598/files/UnifiedThermalModelForPhotohadronicNeutrinoProductionInAstrophysicalSources_J._Cosmol._Astropart._Phys._2021_028.pdf$$yRestricted
000456598 8564_ $$uhttps://bib-pubdb1.desy.de/record/456598/files/UnifiedThermalModelForPhotohadronicNeutrinoProductionInAstrophysicalSources_arXiv210316577.pdf$$yPublished on 2021-07-14. Available in OpenAccess from 2022-07-14.
000456598 8564_ $$uhttps://bib-pubdb1.desy.de/record/456598/files/UnifiedThermalModelForPhotohadronicNeutrinoProductionInAstrophysicalSources_arXiv210316577.pdf?subformat=pdfa$$xpdfa$$yPublished on 2021-07-14. Available in OpenAccess from 2022-07-14.
000456598 8564_ $$uhttps://bib-pubdb1.desy.de/record/456598/files/UnifiedThermalModelForPhotohadronicNeutrinoProductionInAstrophysicalSources_J._Cosmol._Astropart._Phys._2021_028.pdf?subformat=pdfa$$xpdfa$$yRestricted
000456598 909CO $$ooai:bib-pubdb1.desy.de:456598$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000456598 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUniversitá degli studi di Napoli$$b0
000456598 9101_ $$0I:(DE-588b)214094-9$$6P:(DE-HGF)0$$aIstituto Nazionale di Fisica Nucleare$$b0$$kINFN
000456598 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1015502$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000456598 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1021630$$aUniversitá degli studi di Napoli$$b2
000456598 9101_ $$0I:(DE-588b)214094-9$$6P:(DE-H253)PIP1021630$$aIstituto Nazionale di Fisica Nucleare$$b2$$kINFN
000456598 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1021242$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000456598 9131_ $$0G:(DE-HGF)POF4-613$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vMatter and Radiation from the Universe$$x0
000456598 9132_ $$0G:(DE-HGF)POF4-613$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vMatter and Radiation from the Universe$$x0
000456598 9141_ $$y2021
000456598 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000456598 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000456598 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ COSMOL ASTROPART P : 2019$$d2021-01-29
000456598 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ COSMOL ASTROPART P : 2019$$d2021-01-29
000456598 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000456598 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000456598 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000456598 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000456598 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000456598 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000456598 9201_ $$0I:(DE-H253)Z_THAT-20210408$$kZ_THAT$$lTheoretische Astroteilchenphysik$$x0
000456598 980__ $$ajournal
000456598 980__ $$aVDB
000456598 980__ $$aUNRESTRICTED
000456598 980__ $$aI:(DE-H253)Z_THAT-20210408
000456598 9801_ $$aFullTexts