000456480 001__ 456480
000456480 005__ 20211222091217.0
000456480 0247_ $$2INSPIRETeX$$aGiese:2020rtr
000456480 0247_ $$2inspire$$ainspire:1791314
000456480 0247_ $$2arXiv$$aarXiv:2004.06995
000456480 0247_ $$2altmetric$$aaltmetric:79890732
000456480 037__ $$aPUBDB-2021-01476
000456480 041__ $$aEnglish
000456480 088__ $$2arXiv$$aarXiv:2004.06995
000456480 088__ $$2DESY$$aDESY-20-064
000456480 082__ $$a530
000456480 1001_ $$0P:(DE-H253)PIP1025382$$aGiese, Felix$$b0$$eCorresponding author
000456480 245__ $$aModel-independent energy budget of cosmological first-order phase transitions—A sound argument to go beyond the bag model
000456480 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1616406162_31679
000456480 3367_ $$2ORCID$$aWORKING_PAPER
000456480 3367_ $$028$$2EndNote$$aElectronic Article
000456480 3367_ $$2DRIVER$$apreprint
000456480 3367_ $$2BibTeX$$aARTICLE
000456480 3367_ $$2DataCite$$aOutput Types/Working Paper
000456480 500__ $$a24 pages, 2 figures
000456480 520__ $$aWe study the energy budget of a first-order cosmological phase transition, which is an important factor in the prediction of the resulting gravitational wave spectrum. Formerly, this analysis was based mostly on simplified models as for example the bag equation of state. Here, we present a model-independent approach that is exact up to the temperature dependence of the speed of sound in the broken phase. We find that the only relevant quantities that enter in the hydrodynamic analysis are the speed of sound in the broken phase and a linear combination of the energy and pressure differences between the two phases which we call pseudotrace (normalized to the enthalpy in the broken phase). The pseudotrace quantifies the strength of the phase transition and yields the conventional trace of the energy-momentum tensor for a relativistic plasma (with speed of sound squared of one third). We study this approach in several realistic models of the phase transition and also provide a code snippet that can be used to determine the efficiency coefficient for a given phase transition strength and speed of sound. It turns out that our approach is accurate to the percent level for moderately strong phase transitions, while former approaches give at best the right order of magnitude.
000456480 536__ $$0G:(DE-HGF)POF3-611$$a611 - Fundamental Particles and Forces (POF3-611)$$cPOF3-611$$fPOF III$$x0
000456480 536__ $$0G:(GEPRIS)390833306$$aEXC 2121 - Das Quantisierte Universum (390833306)$$c390833306$$fDFG EXC 2121$$x1
000456480 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000456480 650_7 $$2INSPIRE$$avelocity: acoustic
000456480 650_7 $$2INSPIRE$$agravitational radiation: spectrum
000456480 650_7 $$2INSPIRE$$agravitational radiation: emission
000456480 650_7 $$2INSPIRE$$atensor: energy-momentum
000456480 650_7 $$2INSPIRE$$aplasma: relativistic
000456480 650_7 $$2INSPIRE$$acritical phenomena
000456480 650_7 $$2INSPIRE$$atemperature dependence
000456480 650_7 $$2INSPIRE$$aequation of state
000456480 650_7 $$2INSPIRE$$abag model
000456480 650_7 $$2INSPIRE$$anumerical calculations
000456480 650_7 $$2INSPIRE$$aenergy: kinetic
000456480 650_7 $$2INSPIRE$$abubble
000456480 650_7 $$2INSPIRE$$ahydrodynamics
000456480 650_7 $$2autogen$$acosmological phase transitions
000456480 650_7 $$2autogen$$agravitational waves / sources
000456480 650_7 $$2autogen$$agravitational waves/ experiments
000456480 650_7 $$2autogen$$agravitational waves / theory
000456480 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000456480 7001_ $$0P:(DE-H253)PIP1015746$$aKonstandin, Thomas$$b1
000456480 7001_ $$0P:(DE-H253)PIP1090282$$aVis, Jorinde Marjolein van de$$b2$$udesy
000456480 8564_ $$uhttps://bib-pubdb1.desy.de/record/456480/files/2004.06995v2.pdf$$yOpenAccess
000456480 8564_ $$uhttps://bib-pubdb1.desy.de/record/456480/files/2004.06995v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000456480 909CO $$ooai:bib-pubdb1.desy.de:456480$$pVDB
000456480 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000456480 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ COSMOL ASTROPART P : 2019$$d2021-01-29
000456480 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000456480 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000456480 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000456480 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000456480 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000456480 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000456480 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ COSMOL ASTROPART P : 2019$$d2021-01-29
000456480 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished
000456480 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1025382$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000456480 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1015746$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000456480 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1090282$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000456480 9131_ $$0G:(DE-HGF)POF3-611$$1G:(DE-HGF)POF3-610$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Universum$$vFundamental Particles and Forces$$x0
000456480 9132_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000456480 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000456480 980__ $$apreprint
000456480 980__ $$aVDB
000456480 980__ $$aI:(DE-H253)T-20120731
000456480 980__ $$aUNRESTRICTED