000456314 001__ 456314
000456314 005__ 20250716152135.0
000456314 0247_ $$2doi$$a10.1140/epjc/s10052-020-08614-3
000456314 0247_ $$2INSPIRETeX$$aAli:2020ksn
000456314 0247_ $$2inspire$$ainspire:1809852
000456314 0247_ $$2ISSN$$a1434-6044
000456314 0247_ $$2ISSN$$a1434-6052
000456314 0247_ $$2arXiv$$aarXiv:2008.00271
000456314 0247_ $$2datacite_doi$$a10.3204/PUBDB-2021-01450
000456314 0247_ $$2altmetric$$aaltmetric:87122658
000456314 0247_ $$2WOS$$aWOS:000596503400002
000456314 0247_ $$2openalex$$aopenalex:W3110616916
000456314 037__ $$aPUBDB-2021-01450
000456314 041__ $$aEnglish
000456314 082__ $$a530
000456314 088__ $$2arXiv$$aarXiv:2008.00271
000456314 088__ $$2Other$$aACFI-T20-09
000456314 088__ $$2DESY$$aDESY-20-129
000456314 1001_ $$0P:(DE-H253)PIP1003110$$aAli, Ahmed$$b0
000456314 245__ $$aTransverse energy–energy correlations of jets in the electron–proton deep inelastic scattering at HERA
000456314 260__ $$aHeidelberg$$bSpringer$$c2020
000456314 3367_ $$2DRIVER$$aarticle
000456314 3367_ $$2DataCite$$aOutput Types/Journal article
000456314 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1616664638_3940
000456314 3367_ $$2BibTeX$$aARTICLE
000456314 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000456314 3367_ $$00$$2EndNote$$aJournal Article
000456314 500__ $$a18 pages,11 figures; v2: 16 pages, accepted for publication in EPJC
000456314 520__ $$aWe study the event shape variables, transverse energy–energy correlation TEEC $(\cos \phi )$ and its asymmetry ATEEC $(\cos \phi )$ in deep inelastic scattering (DIS) at the electron–proton collider HERA, where $\phi $ is the angle between two jets defined using a transverse-momentum $(k_T)$ jet algorithm. At HERA, jets are defined in the Breit frame, and the leading nontrivial transverse energy–energy correlations arise from the 3-jet configurations. With the help of the NLOJET++, these functions are calculated in the leading order (LO) and the next-to-leading order (NLO) approximations in QCD at the electron–proton center-of-mass energy $\sqrt{s}=314$ GeV. We restrict the angular region to $-0.8 \le \cos \phi \le 0.8$, as the forward- and backward-angular regions require resummed logarithmic corrections, which we have neglected in this work. Following experimental jet-analysis at HERA, we restrict the DIS-variables x, $y=Q^2/(x s)$, where $Q^2=-q^2$ is the negative of the momentum transfer squared $q^2$, to $0 \le x \le 1$, $0.2 \le y \le 0.6$, and the pseudo-rapidity variable in the laboratory frame $(\eta ^\mathrm{{lab}})$ to the range $-1 \le \eta ^\mathrm{{lab}} \le 2.5$. The TEEC and ATEEC functions are worked out for two ranges in $Q^2$, defined by $5.5\,\mathrm{GeV}^2 \le Q^2 \le 80\,\mathrm{GeV}^2$, called the low-$Q^2$-range, and $150\,\mathrm{GeV}^2 \le Q^2 \le 1000\,\mathrm{GeV}^2$, called the high-$Q^2$-range. We show the sensitivity of these functions on the parton distribution functions (PDFs), the factorization $(\mu _F)$ and renormalization $(\mu _R)$ scales, and on $\alpha _s(M_Z^2)$. Of these the correlations are stable against varying the scale $\mu _F$ and the PDFs, but they do depend on $\mu _R$. For the choice of the scale $\mu _R= \sqrt{\langle E_T\rangle ^2 +Q^2}$, advocated in earlier jet analysis at HERA, the shape variables TEEC and ATEEC are found perturbatively robust. These studies are useful in the analysis of the HERA data, including the determination of $\alpha _s(M_Z^2)$ from the shape variables.
000456314 536__ $$0G:(DE-HGF)POF3-611$$a611 - Fundamental Particles and Forces (POF3-611)$$cPOF3-611$$fPOF III$$x0
000456314 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000456314 650_7 $$2INSPIRE$$aparton: distribution function
000456314 650_7 $$2INSPIRE$$ajet: production
000456314 650_7 $$2INSPIRE$$atransverse energy
000456314 650_7 $$2INSPIRE$$acorrelation
000456314 650_7 $$2INSPIRE$$aelectron p: deep inelastic scattering
000456314 650_7 $$2INSPIRE$$ahigher-order: 0
000456314 650_7 $$2INSPIRE$$ahigher-order: 1
000456314 650_7 $$2INSPIRE$$aDESY HERA Stor
000456314 650_7 $$2INSPIRE$$aquantum chromodynamics
000456314 650_7 $$2INSPIRE$$aevent shape analysis
000456314 650_7 $$2INSPIRE$$ascale: renormalization
000456314 650_7 $$2INSPIRE$$afactorization
000456314 650_7 $$2INSPIRE$$aBreit frame
000456314 650_7 $$2INSPIRE$$astability
000456314 650_7 $$2INSPIRE$$aasymmetry
000456314 693__ $$0EXP:(DE-588)4611933-4$$1EXP:(DE-588)4159571-3$$5EXP:(DE-588)4611933-4$$aHERA$$eHERA: HERA-B$$x0
000456314 7001_ $$0P:(DE-H253)PIP1005762$$aLi, Gang$$b1$$udesy
000456314 7001_ $$0P:(DE-HGF)0$$aWang, Wei$$b2$$eCorresponding author
000456314 7001_ $$0INSPIRE-00753219$$aXing, Zhi-Peng$$b3
000456314 773__ $$0PERI:(DE-600)1459069-4$$a10.1140/epjc/s10052-020-08614-3$$gVol. 80, no. 12, p. 1096$$n12$$p1096$$tThe European physical journal / C$$v80$$x1434-6052$$y2020
000456314 7870_ $$0PUBDB-2020-03045$$aAli, Ahmed et.al.$$d$$iIsParent$$rarXiv:2008.00271 ; ACFI-T20-09 ; DESY-20-129$$tTransverse Energy-Energy Correlations of jets in the electron-proton Deep Inelastic Scattering at HERA
000456314 8564_ $$uhttps://bib-pubdb1.desy.de/record/456314/files/Ali2020_Article_TransverseEnergyEnergyCorrelat.pdf$$yOpenAccess
000456314 8564_ $$uhttps://bib-pubdb1.desy.de/record/456314/files/Ali2020_Article_TransverseEnergyEnergyCorrelat.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000456314 909CO $$ooai:bib-pubdb1.desy.de:456314$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000456314 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003110$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000456314 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1005762$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000456314 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000456314 9131_ $$0G:(DE-HGF)POF3-611$$1G:(DE-HGF)POF3-610$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Universum$$vFundamental Particles and Forces$$x0
000456314 9132_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000456314 9141_ $$y2020
000456314 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000456314 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000456314 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000456314 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000456314 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J C : 2019$$d2021-01-27
000456314 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-27
000456314 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-27
000456314 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000456314 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000456314 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000456314 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000456314 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000456314 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-01-27
000456314 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000456314 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000456314 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000456314 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000456314 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000456314 9201_ $$0I:(DE-H253)HERA-B-20120731$$kHERA-B$$lHera-B Kollaboration$$x0
000456314 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x1
000456314 980__ $$ajournal
000456314 980__ $$aVDB
000456314 980__ $$aUNRESTRICTED
000456314 980__ $$aI:(DE-H253)HERA-B-20120731
000456314 980__ $$aI:(DE-H253)T-20120731
000456314 9801_ $$aFullTexts