001     455143
005     20250716152014.0
024 7 _ |a 10.1021/acsami.0c18851
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a altmetric:97452564
|2 altmetric
024 7 _ |a pmid:33295752
|2 pmid
024 7 _ |a WOS:000603397200095
|2 WOS
024 7 _ |2 openalex
|a openalex:W3112255871
037 _ _ |a PUBDB-2021-00958
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Li, Nian
|0 P:(DE-H253)PIP1082308
|b 0
245 _ _ |a In Situ Study of Order Formation in Mesoporous Titania Thin Films Templated by a Diblock Copolymer during Slot-Die Printing
260 _ _ |a Washington, DC
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1727249994_3041890
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a Slot-die printing, a large-scale deposition technique, is applied to fabricate mesoporous titania films. Printing is interesting, for example, for scaling up solar cells where titania films with an interconnected mesoporous network and a large surface-to-volume ratio are desired as photoanodes. A fundamental understanding of the structure evolution during printing is of high significance in tailoring these films. In this work, we provide important insights into the self-assembly of the slot-die-printed titania/polystyrene-block-poly(ethylene oxide) (PS-b-PEO) micelles into ordered hybrid structures in real time via in situ grazing-incidence small-angle X-ray scattering (GISAXS). GISAXS allows for tracking both vertical and lateral structure development of the film formation process. In the hybrid film, a face-centered cubic (FCC) structure is preferentially formed at the interfaces with air and with the substrate, while a defect-rich mixed FCC and body-centered cubic (BCC) structure forms in the bulk. After calcination, the surface and inner morphologies of the obtained nanostructured titania films are compared with the spin-coated analogues. In the printed films, the initially formed nanoscale structure of the hybrid film is preserved, and the resulting mesoporous titania film shows a superior order as compared with the spin-coated thin films which can be beneficial for future applications.
536 _ _ |a 6214 - Nanoscience and Materials for Information Technology (POF3-621)
|0 G:(DE-HGF)POF3-6214
|c POF3-621
|f POF III
|x 0
536 _ _ |a 6G3 - PETRA III (POF3-622)
|0 G:(DE-HGF)POF3-6G3
|c POF3-622
|f POF III
|x 1
536 _ _ |a SWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY)
|0 G:(DE-HGF)2020_Join2-SWEDEN-DESY
|c 2020_Join2-SWEDEN-DESY
|x 2
536 _ _ |a DFG project 390776260 - EXC 2089: e-conversion (390776260)
|0 G:(GEPRIS)390776260
|c 390776260
|x 3
588 _ _ |a Dataset connected to CrossRef
693 _ _ |a PETRA III
|f PETRA Beamline P03
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P03-20150101
|6 EXP:(DE-H253)P-P03-20150101
|x 0
700 1 _ |a Chen, Wei
|0 P:(DE-H253)PIP1080983
|b 1
700 1 _ |a Song, Lin
|0 P:(DE-H253)PIP1020447
|b 2
700 1 _ |a Guo, Renjun
|0 P:(DE-H253)PIP1088515
|b 3
700 1 _ |a Scheel, Manuel A.
|0 P:(DE-H253)PIP1088999
|b 4
700 1 _ |a Yang, Dan
|0 P:(DE-H253)PIP1029667
|b 5
700 1 _ |a Körstgens, Volker
|0 P:(DE-H253)PIP1007820
|b 6
700 1 _ |a Schwartzkopf, Matthias
|0 P:(DE-H253)PIP1010504
|b 7
700 1 _ |a Roth, Stephan V.
|0 P:(DE-H253)PIP1003299
|b 8
|u desy
700 1 _ |a Müller-Buschbaum, Peter
|0 P:(DE-H253)PIP1007825
|b 9
|e Corresponding author
773 _ _ |a 10.1021/acsami.0c18851
|g Vol. 12, no. 51, p. 57627 - 57637
|0 PERI:(DE-600)2467494-1
|n 51
|p 57627 - 57637
|t ACS applied materials & interfaces
|v 12
|y 2020
|x 1944-8252
856 4 _ |u https://bib-pubdb1.desy.de/record/455143/files/Li_acsami.0c18851.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/455143/files/Li_acsami.0c18851.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/455143/files/Li_acsami.0c18851.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/455143/files/Li_acsami.0c18851.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/455143/files/Li_acsami.0c18851.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/455143/files/Li_acsami.0c18851.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:bib-pubdb1.desy.de:455143
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1082308
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1080983
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 2
|6 P:(DE-H253)PIP1020447
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1020447
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1088515
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1088999
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1029667
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 6
|6 P:(DE-H253)PIP1007820
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1007820
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1010504
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1003299
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1007825
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6214
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-622
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Facility topic: Research on Matter with Brilliant Light Sources
|9 G:(DE-HGF)POF3-6G3
|x 1
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and Technologies
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2018
|d 2020-09-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2018
|d 2020-09-02
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PET-D-20190712
|k FS-PET-D
|l Experimentebetreuung PETRA III
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PET-D-20190712
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21