001     455142
005     20211110162741.0
024 7 _ |a 10.1021/acsaem.0c01308
|2 doi
024 7 _ |a altmetric:97122148
|2 altmetric
024 7 _ |a WOS:000618839200012
|2 WOS
037 _ _ |a PUBDB-2021-00957
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Sirtl, Maximilian T.
|0 0000-0002-2860-4223
|b 0
245 _ _ |a Optoelectronic Properties of $Cs_{2}AgBiBr_{6}$ Thin Films: The Influence of Precursor Stoichiometry
260 _ _ |a Washington, DC
|c 2020
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1630577190_3954
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a Lead-free double perovskites have recently attracted growing attention as possible alternatives to lead-based halide perovskites in photovoltaics and other optoelectronic applications. The most prominent compound Cs$_2$AgBiBr$_6$, however, presents issues such as a rather large and indirect band gap, high exciton binding energies, and poor charge carrier transport, especially in thin films. In order to address some of these challenges, we systematically modified the stoichiometry of the precursors used for the synthesis of thin films toward a BiBr$_3$-deficient system. In combination with a stoichiometric excess of AgBr, we obtained highly oriented double perovskite thin films. These modifications directly boost the lifetime of the charge carriers up to 500 ns as observed by time-resolved photoluminescence spectroscopy. Moreover, time-resolved microwave conductivity studies revealed an increase of the charge carrier mobility from 3.5 to around ∼5 cm$^2$/(V s). Solar cells comprising the modified films as planar active layers reached power conversion efficiency (PCE) values up to 1.11%, exceeding the stoichiometric reference film (∼0.97%), both on average and with champion cells. The results in this work underline the importance of controlling the nanomorphology of the bulk film. We anticipate that control of precursor stoichiometry will also offer a promising approach for enhancing the efficiency of other perovskite photovoltaic absorber materials and thin films.
536 _ _ |a 6214 - Nanoscience and Materials for Information Technology (POF3-621)
|0 G:(DE-HGF)POF3-6214
|c POF3-621
|f POF III
|x 0
536 _ _ |a 6G3 - PETRA III (POF3-622)
|0 G:(DE-HGF)POF3-6G3
|c POF3-622
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
693 _ _ |a PETRA III
|f PETRA Beamline P03
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P03-20150101
|6 EXP:(DE-H253)P-P03-20150101
|x 0
700 1 _ |a Armer, Melina
|0 0000-0002-1716-4648
|b 1
700 1 _ |a Reb, Lennart K.
|0 P:(DE-H253)PIP1086691
|b 2
700 1 _ |a Hooijer, Rik
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dörflinger, Patrick
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Scheel, Manuel A.
|0 P:(DE-H253)PIP1088999
|b 5
700 1 _ |a Tvingstedt, Kristofer
|0 0000-0003-0516-9326
|b 6
700 1 _ |a Rieder, Philipp
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Glück, Nadja
|0 0000-0002-1183-4129
|b 8
700 1 _ |a Pandit, Pallavi
|0 P:(DE-H253)PIP1031144
|b 9
700 1 _ |a Roth, Stephan V.
|0 P:(DE-H253)PIP1003299
|b 10
700 1 _ |a Müller-Buschbaum, Peter
|0 P:(DE-H253)PIP1007825
|b 11
700 1 _ |a Dyakonov, Vladimir
|0 P:(DE-H253)PIP1008308
|b 12
700 1 _ |a Bein, Thomas
|0 0000-0001-7248-5906
|b 13
|e Corresponding author
773 _ _ |a 10.1021/acsaem.0c01308
|g Vol. 3, no. 12, p. 11597 - 11609
|0 PERI:(DE-600)2916551-9
|n 12
|p 11597 - 11609
|t ACS applied energy materials
|v 3
|y 2020
|x 2574-0962
856 4 _ |u https://bib-pubdb1.desy.de/record/455142/files/acsaem.0c01308.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/455142/files/acsaem.0c01308.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/455142/files/acsaem.0c01308.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/455142/files/acsaem.0c01308.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/455142/files/acsaem.0c01308.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/455142/files/acsaem.0c01308.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:bib-pubdb1.desy.de:455142
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1086691
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1088999
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1031144
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1031144
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1003299
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1007825
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1008308
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6214
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-622
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Facility topic: Research on Matter with Brilliant Light Sources
|9 G:(DE-HGF)POF3-6G3
|x 1
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and Technologies
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-03
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PET-D-20190712
|k FS-PET-D
|l Experimentebetreuung PETRA III
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PET-D-20190712
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21