001     454640
005     20250729151422.0
024 7 _ |a 10.1140/epjc/s10052-020-7757-5
|2 doi
024 7 _ |a Camarda:2019zyx
|2 INSPIRETeX
024 7 _ |a inspire:1759359
|2 inspire
024 7 _ |a 1434-6044
|2 ISSN
024 7 _ |a 1434-6052
|2 ISSN
024 7 _ |a arXiv:1910.07049
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2021-00642
|2 datacite_doi
024 7 _ |a altmetric:68788471
|2 altmetric
024 7 _ |a WOS:000522226200002
|2 WOS
024 7 _ |a openalex:W3102779687
|2 openalex
037 _ _ |a PUBDB-2021-00642
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:1910.07049
|2 arXiv
100 1 _ |a Camarda, Stefano
|0 P:(DE-H253)PIP1018492
|b 0
|e Corresponding author
|u desy
245 _ _ |a DYTurbo: fast predictions for Drell–Yan processes
260 _ _ |a Heidelberg
|c 2020
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611569228_20963
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Drell–Yan lepton pair production processes are extremely important for standard model (SM) precision tests and for beyond the SM searches at hadron colliders. Fast and accurate predictions are essential to enable the best use of the precision measurements of these processes; they are used for parton density fits, for the extraction of fundamental parameters of the SM, and for the estimation of background processes in searches. This paper describes a new numerical program, DYTurbo, for the calculation of the QCD transverse-momentum resummation of Drell–Yan cross sections up to next-to-next-to-leading logarithmic accuracy combined with the fixed-order results at next-to-next-to-leading order ($\mathcal {O}(\alpha _{\mathrm {S}}^2)$), including the full kinematical dependence of the decaying lepton pair with the corresponding spin correlations and the finite-width effects. The DYTurbo program is an improved reimplementation of the DYqT, DYRes and DYNNLO programs, which provides fast and numerically precise predictions through the factorisation of the cross section into production and decay variables, and the usage of quadrature rules based on interpolating functions for the integration over kinematic variables.
536 _ _ |a 611 - Fundamental Particles and Forces (POF3-611)
|0 G:(DE-HGF)POF3-611
|c POF3-611
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, INSPIRE
650 _ 7 |a resummation: transverse momentum
|2 INSPIRE
650 _ 7 |a cross section: factorization
|2 INSPIRE
650 _ 7 |a lepton: pair production
|2 INSPIRE
650 _ 7 |a spin: correlation
|2 INSPIRE
650 _ 7 |a parton: density
|2 INSPIRE
650 _ 7 |a higher-order: 2
|2 INSPIRE
650 _ 7 |a Drell-Yan process
|2 INSPIRE
650 _ 7 |a kinematics
|2 INSPIRE
650 _ 7 |a quantum chromodynamics
|2 INSPIRE
650 _ 7 |a precision measurement
|2 INSPIRE
650 _ 7 |a hadron: colliding beams
|2 INSPIRE
650 _ 7 |a Hadron colliders
|2 autogen
650 _ 7 |a Electroweak
|2 autogen
650 _ 7 |a QCD
|2 autogen
650 _ 7 |a Drell-Yan
|2 autogen
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Boonekamp, Maarten
|0 M.Boonekamp.1
|b 1
700 1 _ |a Bozzi, Giuseppe
|0 G.Bozzi.1
|b 2
700 1 _ |a Catani, Stefano
|0 S.Catani.1
|b 3
700 1 _ |a Cieri, Leandro
|0 L.Cieri.2
|b 4
700 1 _ |a Cuth, Jakub
|0 J.Cuth.1
|b 5
700 1 _ |a Ferrera, Giancarlo
|0 Giancarlo.Ferrera.1
|b 6
700 1 _ |a de Florian, Daniel
|0 D.de.Florian.1
|b 7
700 1 _ |a Glazov, Alexander
|0 P:(DE-H253)PIP1000466
|b 8
700 1 _ |a Grazzini, Massimiliano
|0 M.Grazzini.1
|b 9
700 1 _ |a Vincter, Manuella G.
|0 M.Vincter.1
|b 10
700 1 _ |a Schott, Matthias
|0 M.Schott.2
|b 11
773 _ _ |a 10.1140/epjc/s10052-020-7757-5
|g Vol. 80, no. 5, p. 251
|0 PERI:(DE-600)1459069-4
|n 5
|p 251
|t The European physical journal / C
|v 80
|y 2020
|x 1434-6052
787 0 _ |a Camarda, Stefano et.al.
|d 2019
|i IsParent
|0 PUBDB-2019-05267
|r arXiv:1910.07049
|t DYTurbo: Fast predictions for Drell-Yan processes
856 4 _ |u https://link.springer.com/article/10.1140/epjc/s10052-020-7757-5
856 4 _ |u https://bib-pubdb1.desy.de/record/454640/files/Camarda2020_Article_DYTurboFastPredictionsForDrell.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/454640/files/Camarda2020_Article_DYTurboFastPredictionsForDrell.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/454640/files/Camarda2020_Article_DYTurboFastPredictionsForDrell.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/454640/files/Camarda2020_Article_DYTurboFastPredictionsForDrell.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/454640/files/Camarda2020_Article_DYTurboFastPredictionsForDrell.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/454640/files/Camarda2020_Article_DYTurboFastPredictionsForDrell.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:454640
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1000466
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Universum
|1 G:(DE-HGF)POF3-610
|0 G:(DE-HGF)POF3-611
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-32
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-32
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR PHYS J C : 2018
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-32
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-32
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-32
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-32
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-32
|w ger
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-32
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
920 1 _ |0 I:(DE-H253)Belle-20160426
|k Belle
|l beauftragt von FH
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)Belle-20160426
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21