001 | 454640 | ||
005 | 20250729151422.0 | ||
024 | 7 | _ | |a 10.1140/epjc/s10052-020-7757-5 |2 doi |
024 | 7 | _ | |a Camarda:2019zyx |2 INSPIRETeX |
024 | 7 | _ | |a inspire:1759359 |2 inspire |
024 | 7 | _ | |a 1434-6044 |2 ISSN |
024 | 7 | _ | |a 1434-6052 |2 ISSN |
024 | 7 | _ | |a arXiv:1910.07049 |2 arXiv |
024 | 7 | _ | |a 10.3204/PUBDB-2021-00642 |2 datacite_doi |
024 | 7 | _ | |a altmetric:68788471 |2 altmetric |
024 | 7 | _ | |a WOS:000522226200002 |2 WOS |
024 | 7 | _ | |a openalex:W3102779687 |2 openalex |
037 | _ | _ | |a PUBDB-2021-00642 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
088 | _ | _ | |a arXiv:1910.07049 |2 arXiv |
100 | 1 | _ | |a Camarda, Stefano |0 P:(DE-H253)PIP1018492 |b 0 |e Corresponding author |u desy |
245 | _ | _ | |a DYTurbo: fast predictions for Drell–Yan processes |
260 | _ | _ | |a Heidelberg |c 2020 |b Springer |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1611569228_20963 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Drell–Yan lepton pair production processes are extremely important for standard model (SM) precision tests and for beyond the SM searches at hadron colliders. Fast and accurate predictions are essential to enable the best use of the precision measurements of these processes; they are used for parton density fits, for the extraction of fundamental parameters of the SM, and for the estimation of background processes in searches. This paper describes a new numerical program, DYTurbo, for the calculation of the QCD transverse-momentum resummation of Drell–Yan cross sections up to next-to-next-to-leading logarithmic accuracy combined with the fixed-order results at next-to-next-to-leading order ($\mathcal {O}(\alpha _{\mathrm {S}}^2)$), including the full kinematical dependence of the decaying lepton pair with the corresponding spin correlations and the finite-width effects. The DYTurbo program is an improved reimplementation of the DYqT, DYRes and DYNNLO programs, which provides fast and numerically precise predictions through the factorisation of the cross section into production and decay variables, and the usage of quadrature rules based on interpolating functions for the integration over kinematic variables. |
536 | _ | _ | |a 611 - Fundamental Particles and Forces (POF3-611) |0 G:(DE-HGF)POF3-611 |c POF3-611 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, INSPIRE |
650 | _ | 7 | |a resummation: transverse momentum |2 INSPIRE |
650 | _ | 7 | |a cross section: factorization |2 INSPIRE |
650 | _ | 7 | |a lepton: pair production |2 INSPIRE |
650 | _ | 7 | |a spin: correlation |2 INSPIRE |
650 | _ | 7 | |a parton: density |2 INSPIRE |
650 | _ | 7 | |a higher-order: 2 |2 INSPIRE |
650 | _ | 7 | |a Drell-Yan process |2 INSPIRE |
650 | _ | 7 | |a kinematics |2 INSPIRE |
650 | _ | 7 | |a quantum chromodynamics |2 INSPIRE |
650 | _ | 7 | |a precision measurement |2 INSPIRE |
650 | _ | 7 | |a hadron: colliding beams |2 INSPIRE |
650 | _ | 7 | |a Hadron colliders |2 autogen |
650 | _ | 7 | |a Electroweak |2 autogen |
650 | _ | 7 | |a QCD |2 autogen |
650 | _ | 7 | |a Drell-Yan |2 autogen |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Boonekamp, Maarten |0 M.Boonekamp.1 |b 1 |
700 | 1 | _ | |a Bozzi, Giuseppe |0 G.Bozzi.1 |b 2 |
700 | 1 | _ | |a Catani, Stefano |0 S.Catani.1 |b 3 |
700 | 1 | _ | |a Cieri, Leandro |0 L.Cieri.2 |b 4 |
700 | 1 | _ | |a Cuth, Jakub |0 J.Cuth.1 |b 5 |
700 | 1 | _ | |a Ferrera, Giancarlo |0 Giancarlo.Ferrera.1 |b 6 |
700 | 1 | _ | |a de Florian, Daniel |0 D.de.Florian.1 |b 7 |
700 | 1 | _ | |a Glazov, Alexander |0 P:(DE-H253)PIP1000466 |b 8 |
700 | 1 | _ | |a Grazzini, Massimiliano |0 M.Grazzini.1 |b 9 |
700 | 1 | _ | |a Vincter, Manuella G. |0 M.Vincter.1 |b 10 |
700 | 1 | _ | |a Schott, Matthias |0 M.Schott.2 |b 11 |
773 | _ | _ | |a 10.1140/epjc/s10052-020-7757-5 |g Vol. 80, no. 5, p. 251 |0 PERI:(DE-600)1459069-4 |n 5 |p 251 |t The European physical journal / C |v 80 |y 2020 |x 1434-6052 |
787 | 0 | _ | |a Camarda, Stefano et.al. |d 2019 |i IsParent |0 PUBDB-2019-05267 |r arXiv:1910.07049 |t DYTurbo: Fast predictions for Drell-Yan processes |
856 | 4 | _ | |u https://link.springer.com/article/10.1140/epjc/s10052-020-7757-5 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/454640/files/Camarda2020_Article_DYTurboFastPredictionsForDrell.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/454640/files/Camarda2020_Article_DYTurboFastPredictionsForDrell.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/454640/files/Camarda2020_Article_DYTurboFastPredictionsForDrell.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/454640/files/Camarda2020_Article_DYTurboFastPredictionsForDrell.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/454640/files/Camarda2020_Article_DYTurboFastPredictionsForDrell.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/454640/files/Camarda2020_Article_DYTurboFastPredictionsForDrell.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:454640 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 8 |6 P:(DE-H253)PIP1000466 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Universum |1 G:(DE-HGF)POF3-610 |0 G:(DE-HGF)POF3-611 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |4 G:(DE-HGF)POF |v Fundamental Particles and Forces |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-32 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-08-32 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b EUR PHYS J C : 2018 |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-08-32 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-08-32 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-08-32 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0571 |2 StatID |b SCOAP3 sponsored Journal |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-08-32 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-08-32 |w ger |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-08-32 |
915 | _ | _ | |a SCOAP3 |0 StatID:(DE-HGF)0570 |2 StatID |
920 | 1 | _ | |0 I:(DE-H253)Belle-20160426 |k Belle |l beauftragt von FH |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)Belle-20160426 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|