001     454549
005     20250716151648.0
024 7 _ |a 10.1021/jacs.0c08352
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a 1943-2984
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2021-00600
|2 datacite_doi
024 7 _ |a altmetric:91634597
|2 altmetric
024 7 _ |a pmid:32924464
|2 pmid
024 7 _ |a WOS:000579400400055
|2 WOS
024 7 _ |2 openalex
|a openalex:W3086673788
037 _ _ |a PUBDB-2021-00600
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Yao, Zhaoyang
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Conformational and Compositional Tuning of Phenanthrocarbazole-Based Dopant-Free Hole-Transport Polymers Boosting the Performance of Perovskite Solar Cells
260 _ _ |a Washington, DC
|c 2020
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611678789_26615
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Conjugated polymers are regarded as promising candidates for dopant-free hole-transport materials (HTMs) in efficient and stable perovskite solar cells (PSCs). Thus far, the vast majority of polymeric HTMs feature structurally complicated benzo[1,2-b:4,5-b’]dithiophene (BDT) analogs and electron-withdrawing heterocycles, forming a strong donor–acceptor (D–A) structure. Herein, a new class of phenanthrocarbazole (PC)-based polymeric HTMs (PC1, PC2, and PC3) has been synthesized by inserting a PC unit into a polymeric thiophene or selenophene chain with the aim of enhancing the $π–π$ stacking of adjacent polymer chains and also to efficiently interact with the perovskite surface through the broad and planar conjugated backbone of the PC. Suitable energy levels, excellent thermostability, and humidity resistivity together with remarkable photoelectric properties are obtained via meticulously tuning the conformation and elemental composition of the polymers. As a result, PSCs containing PC3 as dopant-free HTM show a stabilized power conversion efficiency (PCE) of 20.8% and significantly enhanced longevity, rendering one of the best types of PSCs based on dopant-free HTMs. Subsequent experimental and theoretical studies reveal that the planar conformation of the polymers contributes to an ordered and face-on stacking of the polymer chains. Furthermore, introduction of the “Lewis soft” selenium atom can passivate surface trap sites of perovskite films by Pb–Se interaction and facilitate the interfacial charge separation significantly. This work reveals the guiding principles for rational design of dopant-free polymeric HTMs and also inspires rational exploration of small molecular HTMs.
536 _ _ |a 6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)
|0 G:(DE-HGF)POF3-6213
|c POF3-621
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Zhang, Fuguo
|0 0000-0002-2789-7714
|b 1
700 1 _ |a Guo, Yaxiao
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wu, Heng
|0 P:(DE-HGF)0
|b 3
700 1 _ |a He, Lanlan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Liu, Zhou
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Cai, Bin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Guo, Yu
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Brett, Calvin
|0 P:(DE-H253)PIP1021935
|b 8
700 1 _ |a Li, Yuanyuan
|0 P:(DE-H253)PIP1027114
|b 9
700 1 _ |a Srambickal, Chinmaya Venugopal
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Yang, Xichuan
|0 0000-0002-3035-4163
|b 11
700 1 _ |a Chen, Gang
|0 P:(DE-H253)PIP1080777
|b 12
700 1 _ |a Widengren, Jerker
|0 0000-0003-3200-0374
|b 13
700 1 _ |a Liu, Dianyi
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Gardner, James M.
|0 0000-0002-4782-4969
|b 15
700 1 _ |a Kloo, Lars
|0 0000-0002-0168-2942
|b 16
700 1 _ |a Sun, Licheng
|0 P:(DE-H253)PIP1083782
|b 17
|e Corresponding author
773 _ _ |a 10.1021/jacs.0c08352
|g Vol. 142, no. 41, p. 17681 - 17692
|0 PERI:(DE-600)1472210-0
|n 41
|p 17681 - 17692
|t Journal of the American Chemical Society
|v 142
|y 2020
|x 1520-5126
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/454549/files/jacs.0c08352.pdf
856 4 _ |y OpenAccess
|x icon
|u https://bib-pubdb1.desy.de/record/454549/files/jacs.0c08352.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://bib-pubdb1.desy.de/record/454549/files/jacs.0c08352.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://bib-pubdb1.desy.de/record/454549/files/jacs.0c08352.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://bib-pubdb1.desy.de/record/454549/files/jacs.0c08352.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/454549/files/jacs.0c08352.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:454549
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1021935
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 8
|6 P:(DE-H253)PIP1021935
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1021935
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1027114
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 17
|6 P:(DE-H253)PIP1083782
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6213
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2020-09-03
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J AM CHEM SOC : 2018
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2020-09-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2018
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-03
920 1 _ |0 I:(DE-H253)FS-PET-D-20190712
|k FS-PET-D
|l Experimentebetreuung PETRA III
|x 0
920 1 _ |0 I:(DE-H253)CFEL-AO-20160914
|k CFEL-AO
|l UNI/INF
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-PET-D-20190712
980 _ _ |a I:(DE-H253)CFEL-AO-20160914
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21