000454441 001__ 454441
000454441 005__ 20250716152142.0
000454441 0247_ $$2doi$$a10.1111/jace.17277
000454441 0247_ $$2ISSN$$a0002-7820
000454441 0247_ $$2ISSN$$a1551-2916
000454441 0247_ $$2WOS$$aWOS:000538886700001
000454441 0247_ $$2openalex$$aopenalex:W3031878713
000454441 037__ $$aPUBDB-2021-00515
000454441 041__ $$aEnglish
000454441 082__ $$a660
000454441 1001_ $$00000-0003-3273-8889$$aZhang, Zhaoming$$b0$$eCorresponding author
000454441 245__ $$aPartitioning of Ce, as a simulant for Pu, in a multiphase ceramic nuclear waste form
000454441 260__ $$aWesterville, Ohio$$bSoc.$$c2020
000454441 3367_ $$2DRIVER$$aarticle
000454441 3367_ $$2DataCite$$aOutput Types/Journal article
000454441 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636541367_7499
000454441 3367_ $$2BibTeX$$aARTICLE
000454441 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000454441 3367_ $$00$$2EndNote$$aJournal Article
000454441 500__ $$aWaiting for fulltext
000454441 520__ $$aA pyrochlore‐rich multiphase ceramic waste form was prepared by the alkoxide‐route and consolidated by sintering in air. Cerium (Ce) was used as a surrogate for plutonium (Pu), which was found in both the major pyrochlore and minor perovskite phases, but not the minor rutile phase. A synchrotron‐based fluorescence X‐ray absorption near‐edge spectroscopy (XANES) imaging technique was employed to determine the Ce oxidation state in each of the two Ce‐containing phases. It was shown that the major pyrochlore phase contains only tetravalent Ce, whereas the minor perovskite phase incorporates exclusively trivalent Ce. The effect of sintering atmosphere was also investigated, which revealed a very different phase assemblage when sintered in argon (Ar). A major perovskite phase was produced under Ar with a minor zirconolite‐4M phase, both containing trivalent Ce. The composition of the minor rutile phase remained the same whether it was sintered in air or Ar. The results demonstrate the importance of controlling the oxidation state of multivalent waste ions in the design of ceramic waste forms.
000454441 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x0
000454441 588__ $$aDataset connected to CrossRef
000454441 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eMeasurement at external facility$$x0
000454441 7001_ $$0P:(DE-H253)PIP1027748$$aSpiers, Kathryn$$b1$$udesy
000454441 7001_ $$aVance, Eric R.$$b2
000454441 7001_ $$aDavis, Joel$$b3
000454441 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.17277$$gVol. 103, no. 10, p. 5515 - 5524$$n10$$p5515 - 5524$$tJournal of the American Ceramic Society$$v103$$x1551-2916$$y2020
000454441 8564_ $$uhttps://bib-pubdb1.desy.de/record/454441/files/jace.17277.pdf$$yRestricted
000454441 8564_ $$uhttps://bib-pubdb1.desy.de/record/454441/files/jace.17277.gif?subformat=icon$$xicon$$yRestricted
000454441 8564_ $$uhttps://bib-pubdb1.desy.de/record/454441/files/jace.17277.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000454441 8564_ $$uhttps://bib-pubdb1.desy.de/record/454441/files/jace.17277.jpg?subformat=icon-180$$xicon-180$$yRestricted
000454441 8564_ $$uhttps://bib-pubdb1.desy.de/record/454441/files/jace.17277.jpg?subformat=icon-640$$xicon-640$$yRestricted
000454441 8564_ $$uhttps://bib-pubdb1.desy.de/record/454441/files/jace.17277.pdf?subformat=pdfa$$xpdfa$$yRestricted
000454441 909CO $$ooai:bib-pubdb1.desy.de:454441$$pVDB
000454441 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1027748$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000454441 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000454441 9141_ $$y2020
000454441 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-29$$wger
000454441 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-29$$wger
000454441 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2018$$d2020-08-29
000454441 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000454441 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29
000454441 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-29
000454441 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-29
000454441 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000454441 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29
000454441 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-29
000454441 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-29
000454441 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29
000454441 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000454441 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-29
000454441 9201_ $$0I:(DE-H253)FS-PET-S-20190712$$kFS-PET-S$$lExperimentebetreuung PETRA III$$x0
000454441 980__ $$ajournal
000454441 980__ $$aVDB
000454441 980__ $$aI:(DE-H253)FS-PET-S-20190712
000454441 980__ $$aUNRESTRICTED