001     454023
005     20250716151633.0
024 7 _ |a 10.1038/s41467-020-19729-2
|2 doi
024 7 _ |a 10.3204/PUBDB-2021-00380
|2 datacite_doi
024 7 _ |a altmetric:95311526
|2 altmetric
024 7 _ |a pmid:33268768
|2 pmid
024 7 _ |a WOS:000598904000001
|2 WOS
024 7 _ |2 openalex
|a openalex:W3108121102
037 _ _ |a PUBDB-2021-00380
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Görlin, Mikaela
|0 0000-0003-4472-955X
|b 0
|e Corresponding author
245 _ _ |a Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations
260 _ _ |a [London]
|c 2020
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1625487429_850
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Efficient oxygen evolution reaction (OER) electrocatalysts are pivotal for sustainable fuel production, where the Ni-Fe oxyhydroxide (OOH) is among the most active catalysts for alkaline OER. Electrolyte alkali metal cations have been shown to modify the activity and reaction intermediates, however, the exact mechanism is at question due to unexplained deviations from the cation size trend. Our X-ray absorption spectroelectrochemical results show that bigger cations shift the Ni2+/(3+δ)+ redox peak and OER activity to lower potentials (however, with typical discrepancies), following the order CsOH > NaOH ≈ KOH > RbOH > LiOH. Here, we find that the OER activity follows the variations in electrolyte pH rather than a specific cation, which accounts for differences both in basicity of the alkali hydroxides and other contributing anomalies. Our density functional theory-derived reactivity descriptors confirm that cations impose negligible effect on the Lewis acidity of Ni, Fe, and O lattice sites, thus strengthening the conclusions of an indirect pH effect.
536 _ _ |a 6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)
|0 G:(DE-HGF)POF3-6213
|c POF3-621
|f POF III
|x 0
536 _ _ |a 6G3 - PETRA III (POF3-622)
|0 G:(DE-HGF)POF3-6G3
|c POF3-622
|f POF III
|x 1
536 _ _ |a SWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY)
|0 G:(DE-HGF)2020_Join2-SWEDEN-DESY
|c 2020_Join2-SWEDEN-DESY
|x 2
588 _ _ |a Dataset connected to CrossRef
693 _ _ |a PETRA III
|f PETRA Beamline P64
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P64-20150101
|6 EXP:(DE-H253)P-P64-20150101
|x 0
700 1 _ |a Halldin Stenlid, Joakim
|b 1
700 1 _ |a Koroidov, Sergey
|b 2
700 1 _ |a Wang, Hsin-Yi
|b 3
700 1 _ |a Börner, Mia
|b 4
700 1 _ |a Shipilin, Mikhail
|b 5
700 1 _ |a Kalinko, Aleksandr
|0 P:(DE-H253)PIP1008420
|b 6
700 1 _ |a Murzin, Vadim
|0 P:(DE-H253)PIP1020056
|b 7
700 1 _ |a Safonova, Olga V.
|0 0000-0002-6772-1414
|b 8
700 1 _ |a Nachtegaal, Maarten
|b 9
700 1 _ |a Uheida, Abdusalam
|b 10
700 1 _ |a Dutta, Joydeep
|0 0000-0002-0074-3504
|b 11
700 1 _ |a Bauer, Matthias
|b 12
700 1 _ |a Nilsson, Anders
|b 13
700 1 _ |a Diaz Morales, Oscar
|0 P:(DE-H253)PIP1081810
|b 14
|e Corresponding author
773 _ _ |a 10.1038/s41467-020-19729-2
|g Vol. 11, no. 1, p. 6181
|0 PERI:(DE-600)2553671-0
|n 1
|p 6181
|t Nature Communications
|v 11
|y 2020
|x 2041-1723
856 4 _ |u https://bib-pubdb1.desy.de/record/454023/files/s41467-020-19729-2.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/454023/files/s41467-020-19729-2.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/454023/files/s41467-020-19729-2.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/454023/files/s41467-020-19729-2.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/454023/files/s41467-020-19729-2.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/454023/files/s41467-020-19729-2.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:454023
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1008420
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1008420
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1020056
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 P:(DE-H253)PIP1081810
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6213
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-622
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Facility topic: Research on Matter with Brilliant Light Sources
|9 G:(DE-HGF)POF3-6G3
|x 1
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and Technologies
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-08-25
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2018
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT COMMUN : 2018
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-08-25
920 1 _ |0 I:(DE-H253)FS-PET-S-20190712
|k FS-PET-S
|l Experimentebetreuung PETRA III
|x 0
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)FS-PET-S-20190712
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21