001     454010
005     20250716152021.0
024 7 _ |a 10.1039/D0TA09671G
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a WOS:000590158400044
|2 WOS
024 7 _ |2 openalex
|a openalex:W3099247345
037 _ _ |a PUBDB-2021-00367
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Jiang, Xinyu
|0 P:(DE-H253)PIP1084667
|b 0
245 _ _ |a Internal nanoscale architecture and charge carrier dynamics of wide bandgap non-fullerene bulk heterojunction active layers in organic solar cells
260 _ _ |a London ˜[u.a.]œ
|c 2020
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1727250221_3035796
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a Bulk heterojunction (BHJ) organic solar cells have gained increasing attention in the past few years. In this work, active layers of a wide-bandgap polymer donor with benzodithiophene units PBDB-T-2F and a non-fullerene small molecule acceptor IT-M are assembled into photovoltaic devices with different amounts of solvent additive 1,8-diiodooctane (DIO). The influence of DIO on the nanoscale film morphology and crystalline structure as well as the charge carrier dynamics of the active layers are investigated by combining grazing-incidence small-angle X-ray scattering (GISAXS), grazing-incidence wide-angle X-ray scattering (GIWAXS), X-ray reflectivity (XRR), UV-visible (UV-vis) absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), time-resolved photoluminescence (TRPL) and space charge limited current measurements, which are correlated with the corresponding performance of the solar cells. At 0.5 vol% DIO addition, the wide-bandgap non-fullerene organic solar cells show the best performance due to high open-circuit voltage and short-circuit current resulting from an improved charge carrier management due to the optimal inner nanoscale morphology of the active layers in terms of surface enrichment, crystallinity and crystalline orientation.
536 _ _ |a 6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)
|0 G:(DE-HGF)POF3-6213
|c POF3-621
|f POF III
|x 0
536 _ _ |a 6G3 - PETRA III (POF3-622)
|0 G:(DE-HGF)POF3-6G3
|c POF3-622
|f POF III
|x 1
536 _ _ |a SWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY)
|0 G:(DE-HGF)2020_Join2-SWEDEN-DESY
|c 2020_Join2-SWEDEN-DESY
|x 2
536 _ _ |a DFG project 390776260 - EXC 2089: e-conversion (390776260)
|0 G:(GEPRIS)390776260
|c 390776260
|x 3
588 _ _ |a Dataset connected to CrossRef
693 _ _ |a PETRA III
|f PETRA Beamline P03
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P03-20150101
|6 EXP:(DE-H253)P-P03-20150101
|x 0
700 1 _ |a Kim, Hongwon
|b 1
700 1 _ |a Deimel, Peter S.
|b 2
700 1 _ |a Chen, Wei
|0 P:(DE-H253)PIP1080983
|b 3
700 1 _ |a Cao, Wei
|b 4
700 1 _ |a Yang, Dan
|0 P:(DE-H253)PIP1029667
|b 5
700 1 _ |a Yin, Shanshan
|0 P:(DE-H253)PIP1086085
|b 6
700 1 _ |a Schaffrinna, Roy
|0 P:(DE-H253)PIP1087343
|b 7
700 1 _ |a Allegretti, Francesco
|b 8
700 1 _ |a Barth, Johannes V.
|b 9
700 1 _ |a Schwager, Martina
|b 10
700 1 _ |a Tang, Haodong
|0 0000-0002-5632-5096
|b 11
700 1 _ |a Wang, Kai
|0 P:(DE-H253)PIP1030760
|b 12
700 1 _ |a Schwartzkopf, Matthias
|0 P:(DE-H253)PIP1010504
|b 13
700 1 _ |a Roth, Stephan V.
|0 P:(DE-H253)PIP1003299
|b 14
|u desy
700 1 _ |a Müller-Buschbaum, Peter
|0 P:(DE-H253)PIP1007825
|b 15
|e Corresponding author
773 _ _ |a 10.1039/D0TA09671G
|g Vol. 8, no. 44, p. 23628 - 23636
|0 PERI:(DE-600)2702232-8
|n 44
|p 23628 - 23636
|t Journal of materials chemistry / A
|v 8
|y 2020
|x 2050-7496
909 C O |p VDB
|o oai:bib-pubdb1.desy.de:454010
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1084667
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1080983
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1029667
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1086085
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1087343
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1030760
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 13
|6 P:(DE-H253)PIP1010504
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 14
|6 P:(DE-H253)PIP1003299
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 15
|6 P:(DE-H253)PIP1007825
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6213
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-622
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Facility topic: Research on Matter with Brilliant Light Sources
|9 G:(DE-HGF)POF3-6G3
|x 1
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and Technologies
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2020
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2020-08-18
|w ger
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-08-18
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2018
|d 2020-08-18
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J MATER CHEM A : 2018
|d 2020-08-18
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PET-D-20190712
|k FS-PET-D
|l Experimentebetreuung PETRA III
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PET-D-20190712
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21