Home > Publications database > Internal nanoscale architecture and charge carrier dynamics of wide bandgap non-fullerene bulk heterojunction active layers in organic solar cells > print |
001 | 454010 | ||
005 | 20250716152021.0 | ||
024 | 7 | _ | |a 10.1039/D0TA09671G |2 doi |
024 | 7 | _ | |a 2050-7488 |2 ISSN |
024 | 7 | _ | |a 2050-7496 |2 ISSN |
024 | 7 | _ | |a WOS:000590158400044 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W3099247345 |
037 | _ | _ | |a PUBDB-2021-00367 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Jiang, Xinyu |0 P:(DE-H253)PIP1084667 |b 0 |
245 | _ | _ | |a Internal nanoscale architecture and charge carrier dynamics of wide bandgap non-fullerene bulk heterojunction active layers in organic solar cells |
260 | _ | _ | |a London [u.a.] |c 2020 |b RSC |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1727250221_3035796 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Waiting for fulltext |
520 | _ | _ | |a Bulk heterojunction (BHJ) organic solar cells have gained increasing attention in the past few years. In this work, active layers of a wide-bandgap polymer donor with benzodithiophene units PBDB-T-2F and a non-fullerene small molecule acceptor IT-M are assembled into photovoltaic devices with different amounts of solvent additive 1,8-diiodooctane (DIO). The influence of DIO on the nanoscale film morphology and crystalline structure as well as the charge carrier dynamics of the active layers are investigated by combining grazing-incidence small-angle X-ray scattering (GISAXS), grazing-incidence wide-angle X-ray scattering (GIWAXS), X-ray reflectivity (XRR), UV-visible (UV-vis) absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), time-resolved photoluminescence (TRPL) and space charge limited current measurements, which are correlated with the corresponding performance of the solar cells. At 0.5 vol% DIO addition, the wide-bandgap non-fullerene organic solar cells show the best performance due to high open-circuit voltage and short-circuit current resulting from an improved charge carrier management due to the optimal inner nanoscale morphology of the active layers in terms of surface enrichment, crystallinity and crystalline orientation. |
536 | _ | _ | |a 6213 - Materials and Processes for Energy and Transport Technologies (POF3-621) |0 G:(DE-HGF)POF3-6213 |c POF3-621 |f POF III |x 0 |
536 | _ | _ | |a 6G3 - PETRA III (POF3-622) |0 G:(DE-HGF)POF3-6G3 |c POF3-622 |f POF III |x 1 |
536 | _ | _ | |a SWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY) |0 G:(DE-HGF)2020_Join2-SWEDEN-DESY |c 2020_Join2-SWEDEN-DESY |x 2 |
536 | _ | _ | |a DFG project 390776260 - EXC 2089: e-conversion (390776260) |0 G:(GEPRIS)390776260 |c 390776260 |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef |
693 | _ | _ | |a PETRA III |f PETRA Beamline P03 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P03-20150101 |6 EXP:(DE-H253)P-P03-20150101 |x 0 |
700 | 1 | _ | |a Kim, Hongwon |b 1 |
700 | 1 | _ | |a Deimel, Peter S. |b 2 |
700 | 1 | _ | |a Chen, Wei |0 P:(DE-H253)PIP1080983 |b 3 |
700 | 1 | _ | |a Cao, Wei |b 4 |
700 | 1 | _ | |a Yang, Dan |0 P:(DE-H253)PIP1029667 |b 5 |
700 | 1 | _ | |a Yin, Shanshan |0 P:(DE-H253)PIP1086085 |b 6 |
700 | 1 | _ | |a Schaffrinna, Roy |0 P:(DE-H253)PIP1087343 |b 7 |
700 | 1 | _ | |a Allegretti, Francesco |b 8 |
700 | 1 | _ | |a Barth, Johannes V. |b 9 |
700 | 1 | _ | |a Schwager, Martina |b 10 |
700 | 1 | _ | |a Tang, Haodong |0 0000-0002-5632-5096 |b 11 |
700 | 1 | _ | |a Wang, Kai |0 P:(DE-H253)PIP1030760 |b 12 |
700 | 1 | _ | |a Schwartzkopf, Matthias |0 P:(DE-H253)PIP1010504 |b 13 |
700 | 1 | _ | |a Roth, Stephan V. |0 P:(DE-H253)PIP1003299 |b 14 |u desy |
700 | 1 | _ | |a Müller-Buschbaum, Peter |0 P:(DE-H253)PIP1007825 |b 15 |e Corresponding author |
773 | _ | _ | |a 10.1039/D0TA09671G |g Vol. 8, no. 44, p. 23628 - 23636 |0 PERI:(DE-600)2702232-8 |n 44 |p 23628 - 23636 |t Journal of materials chemistry / A |v 8 |y 2020 |x 2050-7496 |
909 | C | O | |p VDB |o oai:bib-pubdb1.desy.de:454010 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1084667 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1080983 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1029667 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1086085 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-H253)PIP1087343 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 12 |6 P:(DE-H253)PIP1030760 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 13 |6 P:(DE-H253)PIP1010504 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 14 |6 P:(DE-H253)PIP1003299 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 15 |6 P:(DE-H253)PIP1007825 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-621 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |4 G:(DE-HGF)POF |v In-house research on the structure, dynamics and function of matter |9 G:(DE-HGF)POF3-6213 |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-622 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |4 G:(DE-HGF)POF |v Facility topic: Research on Matter with Brilliant Light Sources |9 G:(DE-HGF)POF3-6G3 |x 1 |
913 | 2 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and Technologies |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
913 | 2 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 1 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a Allianz-Lizenz / DFG |0 StatID:(DE-HGF)0400 |2 StatID |d 2020-08-18 |w ger |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2020-08-18 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-08-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-08-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-08-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-08-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-08-18 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-08-18 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J MATER CHEM A : 2018 |d 2020-08-18 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b J MATER CHEM A : 2018 |d 2020-08-18 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-PET-D-20190712 |k FS-PET-D |l Experimentebetreuung PETRA III |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | _ | _ | |a I:(DE-H253)FS-PET-D-20190712 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|