000454010 001__ 454010
000454010 005__ 20250716152021.0
000454010 0247_ $$2doi$$a10.1039/D0TA09671G
000454010 0247_ $$2ISSN$$a2050-7488
000454010 0247_ $$2ISSN$$a2050-7496
000454010 0247_ $$2WOS$$aWOS:000590158400044
000454010 0247_ $$2openalex$$aopenalex:W3099247345
000454010 037__ $$aPUBDB-2021-00367
000454010 041__ $$aEnglish
000454010 082__ $$a530
000454010 1001_ $$0P:(DE-H253)PIP1084667$$aJiang, Xinyu$$b0
000454010 245__ $$aInternal nanoscale architecture and charge carrier dynamics of wide bandgap non-fullerene bulk heterojunction active layers in organic solar cells
000454010 260__ $$aLondon ˜[u.a.]œ$$bRSC$$c2020
000454010 3367_ $$2DRIVER$$aarticle
000454010 3367_ $$2DataCite$$aOutput Types/Journal article
000454010 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1727250221_3035796
000454010 3367_ $$2BibTeX$$aARTICLE
000454010 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000454010 3367_ $$00$$2EndNote$$aJournal Article
000454010 500__ $$aWaiting for fulltext
000454010 520__ $$aBulk heterojunction (BHJ) organic solar cells have gained increasing attention in the past few years. In this work, active layers of a wide-bandgap polymer donor with benzodithiophene units PBDB-T-2F and a non-fullerene small molecule acceptor IT-M are assembled into photovoltaic devices with different amounts of solvent additive 1,8-diiodooctane (DIO). The influence of DIO on the nanoscale film morphology and crystalline structure as well as the charge carrier dynamics of the active layers are investigated by combining grazing-incidence small-angle X-ray scattering (GISAXS), grazing-incidence wide-angle X-ray scattering (GIWAXS), X-ray reflectivity (XRR), UV-visible (UV-vis) absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), time-resolved photoluminescence (TRPL) and space charge limited current measurements, which are correlated with the corresponding performance of the solar cells. At 0.5 vol% DIO addition, the wide-bandgap non-fullerene organic solar cells show the best performance due to high open-circuit voltage and short-circuit current resulting from an improved charge carrier management due to the optimal inner nanoscale morphology of the active layers in terms of surface enrichment, crystallinity and crystalline orientation.
000454010 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x0
000454010 536__ $$0G:(DE-HGF)POF3-6G3$$a6G3 - PETRA III (POF3-622)$$cPOF3-622$$fPOF III$$x1
000454010 536__ $$0G:(DE-HGF)2020_Join2-SWEDEN-DESY$$aSWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY)$$c2020_Join2-SWEDEN-DESY$$x2
000454010 536__ $$0G:(GEPRIS)390776260$$aDFG project 390776260 - EXC 2089: e-conversion (390776260)$$c390776260$$x3
000454010 588__ $$aDataset connected to CrossRef
000454010 693__ $$0EXP:(DE-H253)P-P03-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P03-20150101$$aPETRA III$$fPETRA Beamline P03$$x0
000454010 7001_ $$aKim, Hongwon$$b1
000454010 7001_ $$aDeimel, Peter S.$$b2
000454010 7001_ $$0P:(DE-H253)PIP1080983$$aChen, Wei$$b3
000454010 7001_ $$aCao, Wei$$b4
000454010 7001_ $$0P:(DE-H253)PIP1029667$$aYang, Dan$$b5
000454010 7001_ $$0P:(DE-H253)PIP1086085$$aYin, Shanshan$$b6
000454010 7001_ $$0P:(DE-H253)PIP1087343$$aSchaffrinna, Roy$$b7
000454010 7001_ $$aAllegretti, Francesco$$b8
000454010 7001_ $$aBarth, Johannes V.$$b9
000454010 7001_ $$aSchwager, Martina$$b10
000454010 7001_ $$00000-0002-5632-5096$$aTang, Haodong$$b11
000454010 7001_ $$0P:(DE-H253)PIP1030760$$aWang, Kai$$b12
000454010 7001_ $$0P:(DE-H253)PIP1010504$$aSchwartzkopf, Matthias$$b13
000454010 7001_ $$0P:(DE-H253)PIP1003299$$aRoth, Stephan V.$$b14$$udesy
000454010 7001_ $$0P:(DE-H253)PIP1007825$$aMüller-Buschbaum, Peter$$b15$$eCorresponding author
000454010 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D0TA09671G$$gVol. 8, no. 44, p. 23628 - 23636$$n44$$p23628 - 23636$$tJournal of materials chemistry / A$$v8$$x2050-7496$$y2020
000454010 909CO $$ooai:bib-pubdb1.desy.de:454010$$pVDB
000454010 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1084667$$aExternal Institute$$b0$$kExtern
000454010 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1080983$$aExternal Institute$$b3$$kExtern
000454010 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1029667$$aExternal Institute$$b5$$kExtern
000454010 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086085$$aExternal Institute$$b6$$kExtern
000454010 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1087343$$aExternal Institute$$b7$$kExtern
000454010 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1030760$$aExternal Institute$$b12$$kExtern
000454010 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1010504$$aDeutsches Elektronen-Synchrotron$$b13$$kDESY
000454010 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003299$$aDeutsches Elektronen-Synchrotron$$b14$$kDESY
000454010 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007825$$aExternal Institute$$b15$$kExtern
000454010 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000454010 9131_ $$0G:(DE-HGF)POF3-622$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G3$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Research on Matter with Brilliant Light Sources$$x1
000454010 9132_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and Technologies$$vMaterials – Quantum, Complex and Functional Materials$$x0
000454010 9132_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000454010 9141_ $$y2020
000454010 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-08-18$$wger
000454010 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-08-18$$wger
000454010 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-18
000454010 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-18
000454010 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-18
000454010 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-18
000454010 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-18
000454010 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-18
000454010 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-18
000454010 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-18
000454010 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2018$$d2020-08-18
000454010 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2018$$d2020-08-18
000454010 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000454010 9201_ $$0I:(DE-H253)FS-PET-D-20190712$$kFS-PET-D$$lExperimentebetreuung PETRA III$$x1
000454010 980__ $$ajournal
000454010 980__ $$aVDB
000454010 980__ $$aI:(DE-H253)HAS-User-20120731
000454010 980__ $$aI:(DE-H253)FS-PET-D-20190712
000454010 980__ $$aUNRESTRICTED