Home > Publications database > Lattice and thermodynamic characteristics of N -stearoyl-allo-threonine monolayers > print |
001 | 453844 | ||
005 | 20250729151217.0 | ||
024 | 7 | _ | |a 10.1039/C9CP06304H |2 doi |
024 | 7 | _ | |a 1463-9076 |2 ISSN |
024 | 7 | _ | |a 1463-9084 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2021-00208 |2 datacite_doi |
024 | 7 | _ | |a altmetric:73361808 |2 altmetric |
024 | 7 | _ | |a pmid:31957777 |2 pmid |
024 | 7 | _ | |a WOS:000517561500015 |2 WOS |
024 | 7 | _ | |a openalex:W2996928662 |2 openalex |
037 | _ | _ | |a PUBDB-2021-00208 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Brezesinski, G. |0 P:(DE-H253)PIP1008088 |b 0 |
245 | _ | _ | |a Lattice and thermodynamic characteristics of N -stearoyl-allo-threonine monolayers |
260 | _ | _ | |a Cambridge |c 2020 |b RSC Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1610985942_12905 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The effect of the second chiral center of diastereomeric N-alkanoyl-allo-threonine on the main monolayer characteristics has been investigated. The characteristic features of the enantiomeric and racemic forms of N-stearoyl-allo-threonine monolayers are studied on a thermodynamic basis and molecular scale. The $π$–A curves of the enantiomeric and racemic allo-forms show similar features to those of N-stearoyl-threonine. The compression curves are always located above the corresponding decompression curves and the decompression curves can be used as equilibrium isotherms for both the enantiomeric and racemic N-stearoyl-allo-threonine. The absolute T$_0$-values (disappearance of the LE/LC-transition) are 4–5 K larger compared with the corresponding N-stearoyl-threonines, but the $Δ$T$_0$ between the enantiomeric (D) and the racemic (DL) forms is only slightly larger than that of N-stearoyl-threonine. The difference in the critical temperatures T$_c$, above which the monolayer cannot be compressed into the condensed state, between the enantiomeric and the racemic forms, is quite small ($Δ$T$_c$ = 0.8 K) and is smaller compared to that of the corresponding threonines ($Δ$T$_c$ = 1.8 K). This is consistent with the dominance of the van der Waals interactions between the alkyl chains reducing the influence of chirality on the thermodynamic parameters. GIXD studies of N-stearoyl-allo-threonine monolayers provide information about the lattice structure of condensed monolayer phases on the Angstrom scale and stipulate the homochiral or heterochiral preference in the condensed phases. Comparable to N-stearoyl-threonine, the enantiomers exhibit an oblique lattice structure, whereas the racemates form a NNN tilted orthorhombic structure demonstrating the dominance of heterochiral interactions in the racemates independent of the diasteomeric structure change of the polar head group. The A$_0$ values are characteristic for rotator phases. The smaller A$_0$ value obtained for the racemic monolayers indicates their tighter packing caused by heterochiral interactions. The program Hardpack was used to predict the geometric parameters of possible 2-dimensional packings. For comparison with the experimental GIXD data, the two-dimensional lattice parameters and characteristic features of the enantiomeric and racemic diastereomeric stearoyl-threonine monolayers were calculated and are in reasonable agreement with the experimental GIXD data. |
536 | _ | _ | |a 899 - ohne Topic (POF3-899) |0 G:(DE-HGF)POF3-899 |c POF3-899 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
693 | _ | _ | |a DORIS III |f DORIS Beamline BW1 |1 EXP:(DE-H253)DORISIII-20150101 |0 EXP:(DE-H253)D-BW1-20150101 |6 EXP:(DE-H253)D-BW1-20150101 |x 0 |
700 | 1 | _ | |a Rudert, R. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Vollhardt, D. |0 0000-0002-5297-4638 |b 2 |e Corresponding author |
773 | _ | _ | |a 10.1039/C9CP06304H |g Vol. 22, no. 5, p. 2783 - 2791 |0 PERI:(DE-600)1476244-4 |n 5 |p 2783 - 2791 |t Physical chemistry, chemical physics |v 22 |y 2020 |x 1463-9084 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/453844/files/c9cp06304h.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://bib-pubdb1.desy.de/record/453844/files/c9cp06304h.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://bib-pubdb1.desy.de/record/453844/files/c9cp06304h.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://bib-pubdb1.desy.de/record/453844/files/c9cp06304h.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://bib-pubdb1.desy.de/record/453844/files/c9cp06304h.jpg?subformat=icon-640 |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/453844/files/c9cp06304h.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:453844 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1008088 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF3-890 |0 G:(DE-HGF)POF3-899 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS CHEM CHEM PHYS : 2018 |d 2020-09-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-04 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-09-04 |
915 | _ | _ | |a Allianz-Lizenz / DFG |0 StatID:(DE-HGF)0400 |2 StatID |d 2020-09-04 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-09-04 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2020-09-04 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-04 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-09-04 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-04 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|