000453844 001__ 453844
000453844 005__ 20250729151217.0
000453844 0247_ $$2doi$$a10.1039/C9CP06304H
000453844 0247_ $$2ISSN$$a1463-9076
000453844 0247_ $$2ISSN$$a1463-9084
000453844 0247_ $$2datacite_doi$$a10.3204/PUBDB-2021-00208
000453844 0247_ $$2altmetric$$aaltmetric:73361808
000453844 0247_ $$2pmid$$apmid:31957777
000453844 0247_ $$2WOS$$aWOS:000517561500015
000453844 0247_ $$2openalex$$aopenalex:W2996928662
000453844 037__ $$aPUBDB-2021-00208
000453844 041__ $$aEnglish
000453844 082__ $$a540
000453844 1001_ $$0P:(DE-H253)PIP1008088$$aBrezesinski, G.$$b0
000453844 245__ $$aLattice and thermodynamic characteristics of N -stearoyl-allo-threonine monolayers
000453844 260__ $$aCambridge$$bRSC Publ.$$c2020
000453844 3367_ $$2DRIVER$$aarticle
000453844 3367_ $$2DataCite$$aOutput Types/Journal article
000453844 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610985942_12905
000453844 3367_ $$2BibTeX$$aARTICLE
000453844 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000453844 3367_ $$00$$2EndNote$$aJournal Article
000453844 520__ $$aThe effect of the second chiral center of diastereomeric N-alkanoyl-allo-threonine on the main monolayer characteristics has been investigated. The characteristic features of the enantiomeric and racemic forms of N-stearoyl-allo-threonine monolayers are studied on a thermodynamic basis and molecular scale. The $π$–A curves of the enantiomeric and racemic allo-forms show similar features to those of N-stearoyl-threonine. The compression curves are always located above the corresponding decompression curves and the decompression curves can be used as equilibrium isotherms for both the enantiomeric and racemic N-stearoyl-allo-threonine. The absolute T$_0$-values (disappearance of the LE/LC-transition) are 4–5 K larger compared with the corresponding N-stearoyl-threonines, but the $Δ$T$_0$ between the enantiomeric (D) and the racemic (DL) forms is only slightly larger than that of N-stearoyl-threonine. The difference in the critical temperatures T$_c$, above which the monolayer cannot be compressed into the condensed state, between the enantiomeric and the racemic forms, is quite small ($Δ$T$_c$ = 0.8 K) and is smaller compared to that of the corresponding threonines ($Δ$T$_c$ = 1.8 K). This is consistent with the dominance of the van der Waals interactions between the alkyl chains reducing the influence of chirality on the thermodynamic parameters. GIXD studies of N-stearoyl-allo-threonine monolayers provide information about the lattice structure of condensed monolayer phases on the Angstrom scale and stipulate the homochiral or heterochiral preference in the condensed phases. Comparable to N-stearoyl-threonine, the enantiomers exhibit an oblique lattice structure, whereas the racemates form a NNN tilted orthorhombic structure demonstrating the dominance of heterochiral interactions in the racemates independent of the diasteomeric structure change of the polar head group. The A$_0$ values are characteristic for rotator phases. The smaller A$_0$ value obtained for the racemic monolayers indicates their tighter packing caused by heterochiral interactions. The program Hardpack was used to predict the geometric parameters of possible 2-dimensional packings. For comparison with the experimental GIXD data, the two-dimensional lattice parameters and characteristic features of the enantiomeric and racemic diastereomeric stearoyl-threonine monolayers were calculated and are in reasonable agreement with the experimental GIXD data.
000453844 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000453844 588__ $$aDataset connected to CrossRef
000453844 693__ $$0EXP:(DE-H253)D-BW1-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-BW1-20150101$$aDORIS III$$fDORIS Beamline BW1$$x0
000453844 7001_ $$0P:(DE-HGF)0$$aRudert, R.$$b1
000453844 7001_ $$00000-0002-5297-4638$$aVollhardt, D.$$b2$$eCorresponding author
000453844 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C9CP06304H$$gVol. 22, no. 5, p. 2783 - 2791$$n5$$p2783 - 2791$$tPhysical chemistry, chemical physics$$v22$$x1463-9084$$y2020
000453844 8564_ $$uhttps://bib-pubdb1.desy.de/record/453844/files/c9cp06304h.pdf$$yOpenAccess
000453844 8564_ $$uhttps://bib-pubdb1.desy.de/record/453844/files/c9cp06304h.gif?subformat=icon$$xicon$$yOpenAccess
000453844 8564_ $$uhttps://bib-pubdb1.desy.de/record/453844/files/c9cp06304h.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000453844 8564_ $$uhttps://bib-pubdb1.desy.de/record/453844/files/c9cp06304h.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000453844 8564_ $$uhttps://bib-pubdb1.desy.de/record/453844/files/c9cp06304h.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000453844 8564_ $$uhttps://bib-pubdb1.desy.de/record/453844/files/c9cp06304h.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000453844 909CO $$ooai:bib-pubdb1.desy.de:453844$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000453844 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008088$$aExternal Institute$$b0$$kExtern
000453844 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000453844 9141_ $$y2020
000453844 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000453844 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04
000453844 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000453844 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000453844 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2018$$d2020-09-04
000453844 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000453844 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04
000453844 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-04
000453844 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-09-04$$wger
000453844 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-04
000453844 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-04$$wger
000453844 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000453844 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-04$$wger
000453844 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04
000453844 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000453844 980__ $$ajournal
000453844 980__ $$aVDB
000453844 980__ $$aUNRESTRICTED
000453844 980__ $$aI:(DE-H253)HAS-User-20120731
000453844 9801_ $$aFullTexts