001     452926
005     20250716152204.0
024 7 _ |a 10.1109/TNS.2020.2980929
|2 doi
024 7 _ |a 0018-9499
|2 ISSN
024 7 _ |a 1558-1578
|2 ISSN
024 7 _ |a WOS:000536516000001
|2 WOS
024 7 _ |2 openalex
|a openalex:W3011276550
037 _ _ |a PUBDB-2020-04936
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Bellandi, Andrea
|0 P:(DE-H253)PIP1080593
|b 0
|e Corresponding author
245 _ _ |a Results on FPGA-Based High-Power Tube Amplifier Linearization at DESY
260 _ _ |a New York, NY
|c 2020
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639142385_6859
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a Vacuum-tube amplifiers are the most widespread type of radio frequency (RF) sources used to produce high-power signals needed for beam acceleration in superconducting cavities. At Deutsches Elektronen-Synchrotron (DESY), megawatt-rated klystrons are used to produce millisecond-long RF shots for pulsed operation in particle accelerators. In contrast, inductive output tubes (IOTs) are used to provide a continuous RF signal for continuous-wave (CW) operation. In both cases, the amplifiers suffer from amplitude-dependent nonlinearity between the driving and generated signals. This nonlinearity complicates the setup operations of the low-level RF (LLRF) system and makes it harder to regulate the accelerating field. Therefore, a way to linearize the amplifier is highly valuable. This article covers the design, implementation, and test of a field-programmable gate array (FPGA)-based predistortion linearization unit. The first results on the performance of this component in linearizing the amplifiers of running CW and pulsed superconducting accelerators are presented. Such a component uses programmable interpolating lookup tables (LUT) that are addressed using the squared value of the requested signal amplitude. This component only adds 64-ns latency to the RF control system without relying on any vendor-dependent FPGA component. Other benefits of using programmable interpolating LUT are low usage of FPGA resources and flexibility in terms of the type of amplifier to be corrected. The benefits of using this linearizer for klystrons and IOTs are presented and quantified.
536 _ _ |a 631 - Accelerator R & D (POF3-631)
|0 G:(DE-HGF)POF3-631
|c POF3-631
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
693 _ _ |a XFEL
|e Facility (machine) XFEL
|1 EXP:(DE-H253)XFEL-20150101
|0 EXP:(DE-H253)XFEL(machine)-20150101
|5 EXP:(DE-H253)XFEL(machine)-20150101
|x 0
700 1 _ |a Ayvazyan, Valeri
|0 P:(DE-H253)PIP1005222
|b 1
|u desy
700 1 _ |a Butkowski, Lukasz
|0 P:(DE-H253)PIP1007075
|b 2
700 1 _ |a Cichalewski, Wojciech
|0 P:(DE-H253)PIP1006402
|b 3
700 1 _ |a Dursun, Burak
|0 P:(DE-H253)PIP1086894
|b 4
700 1 _ |a Gumus, Cagil
|0 P:(DE-H253)PIP1033284
|b 5
|u desy
700 1 _ |a Omet, Mathieu
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Pfeiffer, Sven
|0 P:(DE-H253)PIP1012349
|b 7
700 1 _ |a Onken, Rudiger
|0 P:(DE-H253)PIP1001855
|b 8
|u desy
700 1 _ |a Rybaniec, Radoslaw
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Schmidt, Christian
|0 P:(DE-H253)PIP1005968
|b 10
700 1 _ |a Vogel, Vladimir
|0 P:(DE-H253)PIP1005062
|b 11
|u desy
700 1 _ |a Branlard, Julien
|0 P:(DE-H253)PIP1014945
|b 12
|u desy
773 _ _ |a 10.1109/TNS.2020.2980929
|g Vol. 67, no. 5, p. 762 - 767
|0 PERI:(DE-600)2025398-9
|n 5
|p 762 - 767
|t IEEE transactions on nuclear science
|v 67
|y 2020
|x 1558-1578
856 4 _ |u https://ieeexplore.ieee.org/document/9037105
856 4 _ |u https://bib-pubdb1.desy.de/record/452926/files/IEEE_2020.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/452926/files/IEEE_2020.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/452926/files/IEEE_2020.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/452926/files/IEEE_2020.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/452926/files/IEEE_2020.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/452926/files/IEEE_2020.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:bib-pubdb1.desy.de:452926
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1080593
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1005222
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1007075
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1006402
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1086894
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1033284
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1012349
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1001855
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1005968
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1005062
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 12
|6 P:(DE-H253)PIP1014945
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF3-630
|0 G:(DE-HGF)POF3-631
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Accelerator R & D
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T NUCL SCI : 2018
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-25
920 1 _ |0 I:(DE-H253)MSK-20120731
|k MSK
|l Strahlkontrollen
|x 0
920 1 _ |0 I:(DE-H253)MHFp-20210408
|k MHFp
|l MHFp Fachgruppe 4
|x 1
920 1 _ |0 I:(DE-H253)MHFe-20210408
|k MHFe
|l HF-Technik Elektronen
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)MSK-20120731
980 _ _ |a I:(DE-H253)MHFp-20210408
980 _ _ |a I:(DE-H253)MHFe-20210408
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21