000452699 001__ 452699
000452699 005__ 20250729151024.0
000452699 0247_ $$2doi$$a10.1038/s41598-020-70208-6
000452699 0247_ $$2datacite_doi$$a10.3204/PUBDB-2020-04826
000452699 0247_ $$2altmetric$$aaltmetric:87988189
000452699 0247_ $$2pmid$$apmid:32770092
000452699 0247_ $$2WOS$$aWOS:000561428200001
000452699 0247_ $$2openalex$$aopenalex:W2791798868
000452699 037__ $$aPUBDB-2020-04826
000452699 041__ $$aEnglish
000452699 082__ $$a600
000452699 1001_ $$0P:(DE-H253)PIP1008151$$aMajewski, Jaroslaw$$b0
000452699 245__ $$aLipid membrane templated misfolding and self-assembly of intrinsically disordered tau protein
000452699 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2020
000452699 3367_ $$2DRIVER$$aarticle
000452699 3367_ $$2DataCite$$aOutput Types/Journal article
000452699 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607681003_7916
000452699 3367_ $$2BibTeX$$aARTICLE
000452699 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000452699 3367_ $$00$$2EndNote$$aJournal Article
000452699 520__ $$aThe aggregation of the intrinsically disordered tau protein into highly ordered β-sheet-rich fibrils is implicated in the pathogenesis of a range of neurodegenerative disorders. The mechanism of tau fibrillogenesis remains unresolved, particularly early events that trigger the misfolding and assembly of the otherwise soluble and stable tau. We investigated the role the lipid membrane plays in modulating the aggregation of three tau variants, the largest isoform hTau40, the truncated construct K18, and a hyperphosphorylation-mimicking mutant hTau40/3Epi. Despite being charged and soluble, the tau proteins were also highly surface active and favorably interacted with anionic lipid monolayers at the air/water interface. Membrane binding of tau also led to the formation of a macroscopic, gelatinous layer at the air/water interface, possibly related to tau phase separation. At the molecular level, tau assembled into oligomers composed of ~ 40 proteins misfolded in a β-sheet conformation at the membrane surface, as detected by in situ synchrotron grazing-incidence X-ray diffraction. Concomitantly, membrane morphology and lipid packing became disrupted. Our findings support a general tau aggregation mechanism wherein tau’s inherent surface activity and favorable interactions with anionic lipids drive tau-membrane association, inducing misfolding and self-assembly of the disordered tau into β-sheet-rich oligomers that subsequently seed fibrillation and deposition into diseased tissues. 
000452699 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000452699 588__ $$aDataset connected to CrossRef
000452699 693__ $$0EXP:(DE-H253)D-BW1-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-BW1-20150101$$aDORIS III$$fDORIS Beamline BW1$$x0
000452699 7001_ $$0P:(DE-H253)PIP1017419$$aJones, Emmalee M.$$b1
000452699 7001_ $$0P:(DE-HGF)0$$aVander Zanden, Crystal M.$$b2
000452699 7001_ $$0P:(DE-H253)PIP1002861$$aBiernat, Jacek$$b3
000452699 7001_ $$0P:(DE-H253)PIP1002054$$aMandelkow, Eckhard$$b4
000452699 7001_ $$0P:(DE-H253)PIP1008153$$aChi, Eva Y.$$b5$$eCorresponding author
000452699 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-020-70208-6$$gVol. 10, no. 1, p. 13324$$n1$$p13324$$tScientific reports$$v10$$x2045-2322$$y2020
000452699 8564_ $$uhttps://bib-pubdb1.desy.de/record/452699/files/Majewski__Mandelkow__Chi_2020_SciRep_Tau%2Bmembranes_main%2Bsuppl.pdf$$yOpenAccess
000452699 8564_ $$uhttps://bib-pubdb1.desy.de/record/452699/files/Majewski__Mandelkow__Chi_2020_SciRep_Tau%2Bmembranes_main%2Bsuppl.gif?subformat=icon$$xicon$$yOpenAccess
000452699 8564_ $$uhttps://bib-pubdb1.desy.de/record/452699/files/Majewski__Mandelkow__Chi_2020_SciRep_Tau%2Bmembranes_main%2Bsuppl.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000452699 8564_ $$uhttps://bib-pubdb1.desy.de/record/452699/files/Majewski__Mandelkow__Chi_2020_SciRep_Tau%2Bmembranes_main%2Bsuppl.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000452699 8564_ $$uhttps://bib-pubdb1.desy.de/record/452699/files/Majewski__Mandelkow__Chi_2020_SciRep_Tau%2Bmembranes_main%2Bsuppl.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000452699 8564_ $$uhttps://bib-pubdb1.desy.de/record/452699/files/Majewski__Mandelkow__Chi_2020_SciRep_Tau%2Bmembranes_main%2Bsuppl.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000452699 909CO $$ooai:bib-pubdb1.desy.de:452699$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000452699 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008151$$aExternal Institute$$b0$$kExtern
000452699 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1017419$$aExternal Institute$$b1$$kExtern
000452699 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1002861$$aExternal Institute$$b3$$kExtern
000452699 9101_ $$0I:(DE-588b)2019024-4$$6P:(DE-H253)PIP1002054$$aMax-Planck-Gesellschaft zur Förderung der Wissenschaften$$b4$$kMPG
000452699 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008153$$aExternal Institute$$b5$$kExtern
000452699 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000452699 9141_ $$y2020
000452699 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000452699 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000452699 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29
000452699 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-29
000452699 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-29
000452699 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-29
000452699 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-08-29
000452699 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2018$$d2020-08-29
000452699 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-29
000452699 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-29
000452699 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29
000452699 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-29
000452699 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000452699 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-29
000452699 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000452699 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-29
000452699 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-29
000452699 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-29
000452699 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29
000452699 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-29
000452699 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000452699 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000452699 980__ $$ajournal
000452699 980__ $$aVDB
000452699 980__ $$aUNRESTRICTED
000452699 980__ $$aI:(DE-H253)HAS-User-20120731
000452699 9801_ $$aFullTexts