% IMPORTANT: The following is UTF-8 encoded.  This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.

@INPROCEEDINGS{Kpper:452471,
      author       = {Küpper, Jochen},
      title        = {{S}trong-field-ionization and rescatteringin the molecular
                      frame},
      school       = {online only},
      reportid     = {PUBDB-2020-04706},
      year         = {2020},
      abstract     = {Strong-field-ionization and rescatteringin the molecular
                      frameJochen Küpper1Center for Free-Electron Laser Science,
                      Deutsches Elektronen-Synchrotron DESY, Notkestraße 85,22607
                      Hamburg, GermanyDepartment of Physics, Universität Hamburg,
                      Luruper Chaussee 149, 22761 Hamburg, GermanyDepartment of
                      Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6,
                      20146 Hamburg, GermanyCenter for Ultrafast Imaging,
                      Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg,
                      Germanyjochen.kuepper@cfel.deThe interaction of strong laser
                      fields with matter intrinsically provides powerful tools to
                      imagetransient dynamics with an extremely high
                      spatiotemporal resolution. We studied the
                      strong-fieldionization of laser-aligned OCS molecules [1]
                      and show a full real-time picture of the
                      photoelectrondynamics in the combined action of the laser
                      field and the molecular interaction [2]. We demonstratethat
                      the molecule has a dramatic impact on the overall
                      strong-field dynamics: it sets the clock for theemission of
                      electrons with a given rescattering kinetic energy. This
                      result benchmarks the seminalstatements of molecular-frame
                      strong-field physics and has strong impact on the
                      interpretation ofatomic-resolution self-diffraction
                      experiments [3,4]. Furthermore, the resulting encoding of
                      thetime-energy relation in molecular-frame photoelectron
                      momentum distributions shows the wayof probing the molecular
                      potential in real-time and accessing a deeper understanding
                      of electrontransport during strong-field
                      interactions.Furthermore, utilizing our strong control over
                      complex molecules [5] and experimentallyresolving
                      intensity-averaging effects [6], we acquired photoelectron
                      momentum distributions inthe molecular frame for a
                      well-defined, narrow range of incident intensities for the
                      prototypicalbiomolecule indole (C8H7N) and its water cluster
                      (C8H7N–H2O). We disentangled these photo-electron momentum
                      images with a novel, highly efficient semiclassical
                      simulation setup based onthe adiabatic tunneling theory and
                      employing a quantum-chemically exact description of the
                      cationduring the subsequent continuum dynamics
                      [7].Strong-field-ionization and rescatteringin the molecular
                      frameJochen Küpper1Center for Free-Electron Laser Science,
                      Deutsches Elektronen-Synchrotron DESY, Notkestraße 85,22607
                      Hamburg, GermanyDepartment of Physics, Universität Hamburg,
                      Luruper Chaussee 149, 22761 Hamburg, GermanyDepartment of
                      Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6,
                      20146 Hamburg, GermanyCenter for Ultrafast Imaging,
                      Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg,
                      Germanyjochen.kuepper@cfel.deThe interaction of strong laser
                      fields with matter intrinsically provides powerful tools to
                      imagetransient dynamics with an extremely high
                      spatiotemporal resolution. We studied the
                      strong-fieldionization of laser-aligned OCS molecules [1]
                      and show a full real-time picture of the
                      photoelectrondynamics in the combined action of the laser
                      field and the molecular interaction [2]. We demonstratethat
                      the molecule has a dramatic impact on the overall
                      strong-field dynamics: it sets the clock for theemission of
                      electrons with a given rescattering kinetic energy. This
                      result benchmarks the seminalstatements of molecular-frame
                      strong-field physics and has strong impact on the
                      interpretation ofatomic-resolution self-diffraction
                      experiments [3,4]. Furthermore, the resulting encoding of
                      thetime-energy relation in molecular-frame photoelectron
                      momentum distributions shows the wayof probing the molecular
                      potential in real-time and accessing a deeper understanding
                      of electrontransport during strong-field
                      interactions.Furthermore, utilizing our strong control over
                      complex molecules [5] and experimentallyresolving
                      intensity-averaging effects [6], we acquired photoelectron
                      momentum distributions inthe molecular frame for a
                      well-defined, narrow range of incident intensities for the
                      prototypicalbiomolecule indole (C8H7N) and its water cluster
                      (C8H7N–H2O). We disentangled these photo-electron momentum
                      images with a novel, highly efficient semiclassical
                      simulation setup based onthe adiabatic tunneling theory and
                      employing a quantum-chemically exact description of the
                      cationduring the subsequent continuum dynamics [7].[1]E. T.
                      Karamatskos, S. Raabe, T. Mullins, A. Trabattoni, P.
                      Stammer, G. Goldsztejn, R. R. Johansen,K. Długoł ̨ecki,
                      H. Stapelfeldt, M. J. J. Vrakking, S. Trippel, A. Rouzée,
                      and J. Küpper, Molecular movieof ultrafast coherent
                      rotational dynamics of OCS, Nat. Commun.10, 3364 (2019),
                      arXiv:1807.01034[physics].[2]A. Trabattoni, J. Wiese, U. De
                      Giovannini, J.-F. Olivieri, T. Mullins, J. Onvlee, S.-K.
                      Son, B. Frusteri,A. Rubio, S. Trippel, and J. Küpper,
                      Setting the photoelectron clock through molecular alignment,
                      Nat.Commun.11, 2546 (2020), arXiv:1802.06622 [physics].[3]M.
                      Spanner, O. Smirnova, P. B. Corkum, and M. Y. Ivanov,
                      Reading diffraction images in strong fieldionization of
                      diatomic molecules, J. Phys. B37, L243–L250 (2004).[4]E.
                      T. Karamatskos, G. Goldsztejn, S. Raabe, P. Stammer, T.
                      Mullins, A. Trabattoni, R. R. Johansen,H. Stapelfeldt, S.
                      Trippel, M. J. J. Vrakking, J. Küpper, and A. Rouzée,
                      Atomic-resolution imaging of car-bonyl sulfide by
                      laser-induced electron diffraction, J. Chem. Phys.150,
                      244301 (2019), arXiv:1905.03541[physics].[5]Y.-P. Chang, D.
                      A. Horke, S. Trippel, and J. Küpper, Spatially-controlled
                      complex molecules and theirapplications, Int. Rev. Phys.
                      Chem.34, 557–590 (2015), arXiv:1505.05632 [physics].[6]J.
                      Wiese, J.-F. Olivieri, A. Trabattoni, S. Trippel, and J.
                      Küpper, Strong-field photoelectron momentumimaging of OCS
                      at finely resolved incident intensities, New J. Phys.21,
                      083011 (2019), arXiv:1904.07519[physics].[7]J. Wiese, J.
                      Onvlee, S. Trippel, and J. Küpper, Strong-field ionization
                      of complex molecules (2020),under review, arXiv:2003.02116
                      [physics].},
      month         = {Sep},
      date          = {2020-09-09},
      organization  = {Cost Meeting Attosecond Chemistry,
                       Cluj-Napoca (online) (Romania), 9 Sep
                       2020 - 11 Sep 2020},
      subtyp        = {Invited},
      cin          = {FS-CFEL-1 / FS-CFEL-CMI / CFEL-NOVA / UNI/CUI},
      cid          = {I:(DE-H253)FS-CFEL-1-20120731 /
                      I:(DE-H253)FS-CFEL-CMI-20220405 /
                      I:(DE-H253)CFEL-NOVA-20160909 /
                      $I:(DE-H253)UNI_CUI-20121230$},
      pnm          = {6211 - Extreme States of Matter: From Cold Ions to Hot
                      Plasmas (POF3-621) / AIM - CUI: Advanced Imaging of Matter
                      (390715994) / Ex-Net-0002-Phase2-3 - Advanced Imaging of
                      Matter: Structure, Dynamics and Control on the Atomic Scale
                      - AIM $(2018_Ex-Net-0002-Phase2-3)$},
      pid          = {G:(DE-HGF)POF3-6211 / G:(GEPRIS)390715994 /
                      $G:(DE-HGF)2018_Ex-Net-0002-Phase2-3$},
      experiment   = {EXP:(DE-H253)CFEL-Exp-20150101},
      typ          = {PUB:(DE-HGF)6},
      url          = {https://bib-pubdb1.desy.de/record/452471},
}