% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@INPROCEEDINGS{Kpper:452471,
author = {Küpper, Jochen},
title = {{S}trong-field-ionization and rescatteringin the molecular
frame},
school = {online only},
reportid = {PUBDB-2020-04706},
year = {2020},
abstract = {Strong-field-ionization and rescatteringin the molecular
frameJochen Küpper1Center for Free-Electron Laser Science,
Deutsches Elektronen-Synchrotron DESY, Notkestraße 85,22607
Hamburg, GermanyDepartment of Physics, Universität Hamburg,
Luruper Chaussee 149, 22761 Hamburg, GermanyDepartment of
Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6,
20146 Hamburg, GermanyCenter for Ultrafast Imaging,
Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg,
Germanyjochen.kuepper@cfel.deThe interaction of strong laser
fields with matter intrinsically provides powerful tools to
imagetransient dynamics with an extremely high
spatiotemporal resolution. We studied the
strong-fieldionization of laser-aligned OCS molecules [1]
and show a full real-time picture of the
photoelectrondynamics in the combined action of the laser
field and the molecular interaction [2]. We demonstratethat
the molecule has a dramatic impact on the overall
strong-field dynamics: it sets the clock for theemission of
electrons with a given rescattering kinetic energy. This
result benchmarks the seminalstatements of molecular-frame
strong-field physics and has strong impact on the
interpretation ofatomic-resolution self-diffraction
experiments [3,4]. Furthermore, the resulting encoding of
thetime-energy relation in molecular-frame photoelectron
momentum distributions shows the wayof probing the molecular
potential in real-time and accessing a deeper understanding
of electrontransport during strong-field
interactions.Furthermore, utilizing our strong control over
complex molecules [5] and experimentallyresolving
intensity-averaging effects [6], we acquired photoelectron
momentum distributions inthe molecular frame for a
well-defined, narrow range of incident intensities for the
prototypicalbiomolecule indole (C8H7N) and its water cluster
(C8H7N–H2O). We disentangled these photo-electron momentum
images with a novel, highly efficient semiclassical
simulation setup based onthe adiabatic tunneling theory and
employing a quantum-chemically exact description of the
cationduring the subsequent continuum dynamics
[7].Strong-field-ionization and rescatteringin the molecular
frameJochen Küpper1Center for Free-Electron Laser Science,
Deutsches Elektronen-Synchrotron DESY, Notkestraße 85,22607
Hamburg, GermanyDepartment of Physics, Universität Hamburg,
Luruper Chaussee 149, 22761 Hamburg, GermanyDepartment of
Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6,
20146 Hamburg, GermanyCenter for Ultrafast Imaging,
Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg,
Germanyjochen.kuepper@cfel.deThe interaction of strong laser
fields with matter intrinsically provides powerful tools to
imagetransient dynamics with an extremely high
spatiotemporal resolution. We studied the
strong-fieldionization of laser-aligned OCS molecules [1]
and show a full real-time picture of the
photoelectrondynamics in the combined action of the laser
field and the molecular interaction [2]. We demonstratethat
the molecule has a dramatic impact on the overall
strong-field dynamics: it sets the clock for theemission of
electrons with a given rescattering kinetic energy. This
result benchmarks the seminalstatements of molecular-frame
strong-field physics and has strong impact on the
interpretation ofatomic-resolution self-diffraction
experiments [3,4]. Furthermore, the resulting encoding of
thetime-energy relation in molecular-frame photoelectron
momentum distributions shows the wayof probing the molecular
potential in real-time and accessing a deeper understanding
of electrontransport during strong-field
interactions.Furthermore, utilizing our strong control over
complex molecules [5] and experimentallyresolving
intensity-averaging effects [6], we acquired photoelectron
momentum distributions inthe molecular frame for a
well-defined, narrow range of incident intensities for the
prototypicalbiomolecule indole (C8H7N) and its water cluster
(C8H7N–H2O). We disentangled these photo-electron momentum
images with a novel, highly efficient semiclassical
simulation setup based onthe adiabatic tunneling theory and
employing a quantum-chemically exact description of the
cationduring the subsequent continuum dynamics [7].[1]E. T.
Karamatskos, S. Raabe, T. Mullins, A. Trabattoni, P.
Stammer, G. Goldsztejn, R. R. Johansen,K. Długoł ̨ecki,
H. Stapelfeldt, M. J. J. Vrakking, S. Trippel, A. Rouzée,
and J. Küpper, Molecular movieof ultrafast coherent
rotational dynamics of OCS, Nat. Commun.10, 3364 (2019),
arXiv:1807.01034[physics].[2]A. Trabattoni, J. Wiese, U. De
Giovannini, J.-F. Olivieri, T. Mullins, J. Onvlee, S.-K.
Son, B. Frusteri,A. Rubio, S. Trippel, and J. Küpper,
Setting the photoelectron clock through molecular alignment,
Nat.Commun.11, 2546 (2020), arXiv:1802.06622 [physics].[3]M.
Spanner, O. Smirnova, P. B. Corkum, and M. Y. Ivanov,
Reading diffraction images in strong fieldionization of
diatomic molecules, J. Phys. B37, L243–L250 (2004).[4]E.
T. Karamatskos, G. Goldsztejn, S. Raabe, P. Stammer, T.
Mullins, A. Trabattoni, R. R. Johansen,H. Stapelfeldt, S.
Trippel, M. J. J. Vrakking, J. Küpper, and A. Rouzée,
Atomic-resolution imaging of car-bonyl sulfide by
laser-induced electron diffraction, J. Chem. Phys.150,
244301 (2019), arXiv:1905.03541[physics].[5]Y.-P. Chang, D.
A. Horke, S. Trippel, and J. Küpper, Spatially-controlled
complex molecules and theirapplications, Int. Rev. Phys.
Chem.34, 557–590 (2015), arXiv:1505.05632 [physics].[6]J.
Wiese, J.-F. Olivieri, A. Trabattoni, S. Trippel, and J.
Küpper, Strong-field photoelectron momentumimaging of OCS
at finely resolved incident intensities, New J. Phys.21,
083011 (2019), arXiv:1904.07519[physics].[7]J. Wiese, J.
Onvlee, S. Trippel, and J. Küpper, Strong-field ionization
of complex molecules (2020),under review, arXiv:2003.02116
[physics].},
month = {Sep},
date = {2020-09-09},
organization = {Cost Meeting Attosecond Chemistry,
Cluj-Napoca (online) (Romania), 9 Sep
2020 - 11 Sep 2020},
subtyp = {Invited},
cin = {FS-CFEL-1 / FS-CFEL-CMI / CFEL-NOVA / UNI/CUI},
cid = {I:(DE-H253)FS-CFEL-1-20120731 /
I:(DE-H253)FS-CFEL-CMI-20220405 /
I:(DE-H253)CFEL-NOVA-20160909 /
$I:(DE-H253)UNI_CUI-20121230$},
pnm = {6211 - Extreme States of Matter: From Cold Ions to Hot
Plasmas (POF3-621) / AIM - CUI: Advanced Imaging of Matter
(390715994) / Ex-Net-0002-Phase2-3 - Advanced Imaging of
Matter: Structure, Dynamics and Control on the Atomic Scale
- AIM $(2018_Ex-Net-0002-Phase2-3)$},
pid = {G:(DE-HGF)POF3-6211 / G:(GEPRIS)390715994 /
$G:(DE-HGF)2018_Ex-Net-0002-Phase2-3$},
experiment = {EXP:(DE-H253)CFEL-Exp-20150101},
typ = {PUB:(DE-HGF)6},
url = {https://bib-pubdb1.desy.de/record/452471},
}