001     450368
005     20250724175218.0
024 7 _ |a 10.1016/j.jallcom.2020.157459
|2 doi
024 7 _ |a 0925-8388
|2 ISSN
024 7 _ |a 1873-4669
|2 ISSN
024 7 _ |a WOS:000601001500062
|2 WOS
024 7 _ |a openalex:W3092401149
|2 openalex
037 _ _ |a PUBDB-2020-04314
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Solarz, Piotr
|0 P:(DE-H253)PIP1008995
|b 0
|e Corresponding author
245 _ _ |a VIS- VUV spectroscopy of $K_5GdLi_2F_{10}$: Tb, Eu and temperature activated energy transfer from terbium to europium
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b ScienceDirect
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1645187778_19505
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a K$_5$GdLi$_2$F$_{10}$ compound doped with Tb$^{3+}$ and Eu$^{3+}$ was synthetized. The excited states of these lanthanide ions were analyzed up to VUV range at 125,000 cm$^{−1}$ (80 nm). Strong coupling between terbium and europium was found. The energy transfer processes from terbium to europium mainly depend on fast migration. The lifetime of $^5$D$_4$ multiplet in the presence of europium is shorter by about 30% in comparison to singly doped terbium compounds. The character of the decay curve of the $^5$D$_4$ multiplet is mono-exponential. Non-exponential character was discovered in the case of $^5$D$_1$ europium multiplet in the presence of terbium. The nature of this quenching was determined to be dipole-dipole interaction with critical distance 9.96 Å. The energy transfer is temperature dependent.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
693 _ _ |a DORIS III
|f DORIS Beamline I
|1 EXP:(DE-H253)DORISIII-20150101
|0 EXP:(DE-H253)D-I-20150101
|6 EXP:(DE-H253)D-I-20150101
|x 0
773 _ _ |a 10.1016/j.jallcom.2020.157459
|g Vol. 855, p. 157459 -
|0 PERI:(DE-600)2012675-X
|p 157459
|t Journal of alloys and compounds
|v 855
|y 2021
|x 0925-8388
856 4 _ |u https://www.sciencedirect.com/science/article/abs/pii/S0925838820338238
909 C O |p VDB
|o oai:bib-pubdb1.desy.de:450368
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1008995
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
913 0 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-14
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ALLOY COMPD : 2018
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-14
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-14
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-14
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21