000449657 001__ 449657
000449657 005__ 20250729150834.0
000449657 0247_ $$2doi$$a10.1088/1475-7516/2020/07/057
000449657 0247_ $$2INSPIRETeX$$aGiese:2020rtr
000449657 0247_ $$2inspire$$ainspire:1791314
000449657 0247_ $$2arXiv$$aarXiv:2004.06995
000449657 0247_ $$2altmetric$$aaltmetric:79890732
000449657 0247_ $$2WOS$$aWOS:000609085900004
000449657 0247_ $$2openalex$$aopenalex:W3017295507
000449657 037__ $$aPUBDB-2020-03913
000449657 041__ $$aEnglish
000449657 082__ $$a530
000449657 088__ $$2arXiv$$aarXiv:2004.06995
000449657 088__ $$2DESY$$aDESY-20-064
000449657 1001_ $$0P:(DE-H253)PIP1025382$$aGiese, Felix$$b0$$eCorresponding author$$udesy
000449657 245__ $$aModel-independent energy budget of cosmological first-order phase transitions—A sound argument to go beyond the bag model
000449657 260__ $$aLondon$$bIOP$$c2020
000449657 3367_ $$2DRIVER$$aarticle
000449657 3367_ $$2DataCite$$aOutput Types/Journal article
000449657 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637667356_5715
000449657 3367_ $$2BibTeX$$aARTICLE
000449657 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000449657 3367_ $$00$$2EndNote$$aJournal Article
000449657 520__ $$aWe study the energy budget of a first-order cosmological phase transition, which is an important factor in the prediction of the resulting gravitational wave spectrum. Formerly, this analysis was based mostly on simplified models as for example the bag equation of state. Here, we present a model-independent approach that is exact up to the temperature dependence of the speed of sound in the broken phase. We find that the only relevant quantities that enter in the hydrodynamic analysis are the speed of sound in the broken phase and a linear combination of the energy and pressure differences between the two phases which we call pseudotrace (normalized to the enthalpy in the broken phase). The pseudotrace quantifies the strength of the phase transition and yields the conventional trace of the energy-momentum tensor for a relativistic plasma (with speed of sound squared of one third). We study this approach in several realistic models of the phase transition and also provide a code snippet that can be used to determine the efficiency coefficient for a given phase transition strength and speed of sound. It turns out that our approach is accurate to the percent level for moderately strong phase transitions, while former approaches give at best the right order of magnitude.
000449657 536__ $$0G:(DE-HGF)POF3-611$$a611 - Fundamental Particles and Forces (POF3-611)$$cPOF3-611$$fPOF III$$x0
000449657 536__ $$0G:(GEPRIS)390833306$$aEXC 2121 - Das Quantisierte Universum (390833306)$$c390833306$$fDFG EXC 2121$$x1
000449657 588__ $$aDataset connected to CrossRef, INSPIRE
000449657 650_7 $$2INSPIRE$$avelocity: acoustic
000449657 650_7 $$2INSPIRE$$agravitational radiation: spectrum
000449657 650_7 $$2INSPIRE$$agravitational radiation: emission
000449657 650_7 $$2INSPIRE$$atensor: energy-momentum
000449657 650_7 $$2INSPIRE$$aplasma: relativistic
000449657 650_7 $$2INSPIRE$$acritical phenomena
000449657 650_7 $$2INSPIRE$$atemperature dependence
000449657 650_7 $$2INSPIRE$$aequation of state
000449657 650_7 $$2INSPIRE$$abag model
000449657 650_7 $$2INSPIRE$$anumerical calculations
000449657 650_7 $$2INSPIRE$$aenergy: kinetic
000449657 650_7 $$2INSPIRE$$abubble
000449657 650_7 $$2INSPIRE$$ahydrodynamics
000449657 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000449657 7001_ $$0P:(DE-H253)PIP1015746$$aKonstandin, Thomas$$b1
000449657 7001_ $$0P:(DE-H253)PIP1090282$$avan de Vis, Jorinde$$b2$$udesy
000449657 773__ $$0PERI:(DE-600)2104147-7$$a10.1088/1475-7516/2020/07/057$$gVol. 2007, no. 07, p. 057 - 057$$p057 (1-19)$$tJournal of cosmology and astroparticle physics$$v07$$x1475-7516$$y2020
000449657 7870_ $$0PUBDB-2021-01476$$aGiese, Felix et.al.$$d$$iIsParent$$rarXiv:2004.06995 ; DESY-20-064$$tModel-independent energy budget of cosmological first-order phase transitions—A sound argument to go beyond the bag model
000449657 8564_ $$uhttps://bib-pubdb1.desy.de/record/449657/files/Giese_2020_J._Cosmol._Astropart._Phys._2020_057.pdf$$yRestricted
000449657 8564_ $$uhttps://bib-pubdb1.desy.de/record/449657/files/Giese_2020_J._Cosmol._Astropart._Phys._2020_057.gif?subformat=icon$$xicon$$yRestricted
000449657 8564_ $$uhttps://bib-pubdb1.desy.de/record/449657/files/Giese_2020_J._Cosmol._Astropart._Phys._2020_057.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000449657 8564_ $$uhttps://bib-pubdb1.desy.de/record/449657/files/Giese_2020_J._Cosmol._Astropart._Phys._2020_057.jpg?subformat=icon-180$$xicon-180$$yRestricted
000449657 8564_ $$uhttps://bib-pubdb1.desy.de/record/449657/files/Giese_2020_J._Cosmol._Astropart._Phys._2020_057.jpg?subformat=icon-640$$xicon-640$$yRestricted
000449657 8564_ $$uhttps://bib-pubdb1.desy.de/record/449657/files/Giese_2020_J._Cosmol._Astropart._Phys._2020_057.pdf?subformat=pdfa$$xpdfa$$yRestricted
000449657 909CO $$ooai:bib-pubdb1.desy.de:449657$$pVDB
000449657 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1025382$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000449657 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1015746$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000449657 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1090282$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000449657 9131_ $$0G:(DE-HGF)POF3-611$$1G:(DE-HGF)POF3-610$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Universum$$vFundamental Particles and Forces$$x0
000449657 9132_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000449657 9141_ $$y2020
000449657 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-03$$wger
000449657 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ COSMOL ASTROPART P : 2018$$d2020-01-03
000449657 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-03
000449657 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-03
000449657 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-03
000449657 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-03
000449657 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-03
000449657 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-03
000449657 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ COSMOL ASTROPART P : 2018$$d2020-01-03
000449657 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000449657 980__ $$ajournal
000449657 980__ $$aVDB
000449657 980__ $$aI:(DE-H253)T-20120731
000449657 980__ $$aUNRESTRICTED