001     449197
005     20250716151928.0
024 7 _ |a 10.1016/j.ijhydene.2020.07.186
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a altmetric:95083719
|2 altmetric
024 7 _ |a WOS:000579568300066
|2 WOS
024 7 _ |2 openalex
|a openalex:W3082853630
037 _ _ |a PUBDB-2020-03647
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Balcerzak, Mateusz
|0 P:(DE-H253)PIP1082706
|b 0
|e Corresponding author
245 _ _ |a Effect of Cr on the hydrogen storage and electronic properties of BCC alloys: Experimental and first-principles study
260 _ _ |a New York, NY [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1645089692_29062
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a Inventing an effective method to store large amounts of hydrogen at room temperature is one of the key challenges in developing a hydrogen-based economy. Metal hydrides have attracted attention owing to their promising hydrogen storage capabilities. We have systematically studied the structural and electronic properties of mechanically synthesized Ti$_{0.5}$V$_{1.5-x}$Cr$_x$ (0 ≤ x ≤ 0.3) alloys and investigated the influence of the addition of Cr atoms on the hydrogen storage properties of vanadium-rich body-centered-cubic (V-BCC) alloys. X-ray diffraction (XRD) results indicate that all alloys are composed of BCC main phase, with the lattice parameters exhibiting no change following chemical modification. The kinetic measurements have revealed that Cr-containing alloys exhibit improved hydrogen uptake. X-ray photoelectron spectroscopy (XPS) measurements have shown that the addition of Cr has a significant effect on the anti-oxidation properties of V-BCC alloys, increasing their chemical activity and thus enhancing the hydrogen storage properties. Moreover, XPS results elucidate the role of activation of the studied materials. Additionally, the electrochemical properties of the negative electrodes (as part of Ni-MH$_x$ secondary batteries) made of Ti$_{0.5}$V$_{1.4-x}$Ni$_{0.1}$Cr$_x$ (0 ≤ x ≤ 0.3) system have been studied by cyclic charge-discharge and demonstrate that doping of the V-BCC alloys with Cr can significantly improve the cycle-life stability of anode that exhibits similar discharge performance up to 50 cycles. First principles simulations are used to analyse the changes in the electronic density of states close to the Fermi level, as a function of Cr concentration, as well as binding energies and structural changes upon hydrogen absorption. Furthermore, ab initio studies confirmed that H absorption is favoured with increasing Cr-content. Our study highlights the importance of the addition of Cr to V-BCC alloys on both solid-gas and electrochemical hydrogenation reactions.
536 _ _ |a 6214 - Nanoscience and Materials for Information Technology (POF3-621)
|0 G:(DE-HGF)POF3-6214
|c POF3-621
|f POF III
|x 0
536 _ _ |a NFFA-Europe_supported - Technically supported by Nanoscience Foundries and Fine Analysis Europe (2020_Join2-NFFA-Europe_funded)
|0 G:(DE-HGF)2020_Join2-NFFA-Europe_funded
|c 2020_Join2-NFFA-Europe_funded
|x 1
588 _ _ |a Dataset connected to CrossRef
693 _ _ |a Nanolab
|e DESY NanoLab: Surface Spectroscopy
|1 EXP:(DE-H253)DESY-NanoLab-20150101
|0 EXP:(DE-H253)Nanolab-02-20150101
|5 EXP:(DE-H253)Nanolab-02-20150101
|x 0
693 _ _ |a Nanolab
|e DESY NanoLab: X-Ray Diffraction
|1 EXP:(DE-H253)DESY-NanoLab-20150101
|0 EXP:(DE-H253)Nanolab-03-20150101
|5 EXP:(DE-H253)Nanolab-03-20150101
|x 1
700 1 _ |a Wagstaffe, Michael
|0 P:(DE-H253)PIP1083077
|b 1
700 1 _ |a Robles, Eric
|0 P:(DE-H253)PIP1016379
|b 2
700 1 _ |a Pruneda, M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Noei, Heshmat
|0 P:(DE-H253)PIP1018647
|b 4
773 _ _ |a 10.1016/j.ijhydene.2020.07.186
|g p. S0360319920327968
|0 PERI:(DE-600)1484487-4
|n 53
|p 28996 - 29008
|t International journal of hydrogen energy
|v 45
|y 2020
|x 0360-3199
856 4 _ |u https://www.sciencedirect.com/science/article/abs/pii/S0360319920327968?via%3Dihub
856 4 _ |u https://bib-pubdb1.desy.de/record/449197/files/HN%201-s2.0-S0360319920327968-main.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/449197/files/HN%201-s2.0-S0360319920327968-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/449197/files/HN%201-s2.0-S0360319920327968-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/449197/files/HN%201-s2.0-S0360319920327968-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/449197/files/HN%201-s2.0-S0360319920327968-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/449197/files/HN%201-s2.0-S0360319920327968-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |q ec_fundedresources
|p VDB
|o oai:bib-pubdb1.desy.de:449197
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1082706
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1083077
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1016379
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1018647
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6214
|x 0
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2018
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-17
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-NL-20120731
|k FS-NL
|l Nanolab
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-NL-20120731
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21