000449197 001__ 449197
000449197 005__ 20250716151928.0
000449197 0247_ $$2doi$$a10.1016/j.ijhydene.2020.07.186
000449197 0247_ $$2ISSN$$a0360-3199
000449197 0247_ $$2ISSN$$a1879-3487
000449197 0247_ $$2altmetric$$aaltmetric:95083719
000449197 0247_ $$2WOS$$aWOS:000579568300066
000449197 0247_ $$2openalex$$aopenalex:W3082853630
000449197 037__ $$aPUBDB-2020-03647
000449197 041__ $$aEnglish
000449197 082__ $$a620
000449197 1001_ $$0P:(DE-H253)PIP1082706$$aBalcerzak, Mateusz$$b0$$eCorresponding author
000449197 245__ $$aEffect of Cr on the hydrogen storage and electronic properties of BCC alloys: Experimental and first-principles study
000449197 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2020
000449197 3367_ $$2DRIVER$$aarticle
000449197 3367_ $$2DataCite$$aOutput Types/Journal article
000449197 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645089692_29062
000449197 3367_ $$2BibTeX$$aARTICLE
000449197 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000449197 3367_ $$00$$2EndNote$$aJournal Article
000449197 500__ $$aWaiting for fulltext
000449197 520__ $$aInventing an effective method to store large amounts of hydrogen at room temperature is one of the key challenges in developing a hydrogen-based economy. Metal hydrides have attracted attention owing to their promising hydrogen storage capabilities. We have systematically studied the structural and electronic properties of mechanically synthesized Ti$_{0.5}$V$_{1.5-x}$Cr$_x$ (0 ≤ x ≤ 0.3) alloys and investigated the influence of the addition of Cr atoms on the hydrogen storage properties of vanadium-rich body-centered-cubic (V-BCC) alloys. X-ray diffraction (XRD) results indicate that all alloys are composed of BCC main phase, with the lattice parameters exhibiting no change following chemical modification. The kinetic measurements have revealed that Cr-containing alloys exhibit improved hydrogen uptake. X-ray photoelectron spectroscopy (XPS) measurements have shown that the addition of Cr has a significant effect on the anti-oxidation properties of V-BCC alloys, increasing their chemical activity and thus enhancing the hydrogen storage properties. Moreover, XPS results elucidate the role of activation of the studied materials. Additionally, the electrochemical properties of the negative electrodes (as part of Ni-MH$_x$ secondary batteries) made of Ti$_{0.5}$V$_{1.4-x}$Ni$_{0.1}$Cr$_x$ (0 ≤ x ≤ 0.3) system have been studied by cyclic charge-discharge and demonstrate that doping of the V-BCC alloys with Cr can significantly improve the cycle-life stability of anode that exhibits similar discharge performance up to 50 cycles. First principles simulations are used to analyse the changes in the electronic density of states close to the Fermi level, as a function of Cr concentration, as well as binding energies and structural changes upon hydrogen absorption. Furthermore, ab initio studies confirmed that H absorption is favoured with increasing Cr-content. Our study highlights the importance of the addition of Cr to V-BCC alloys on both solid-gas and electrochemical hydrogenation reactions.
000449197 536__ $$0G:(DE-HGF)POF3-6214$$a6214 - Nanoscience and Materials for Information Technology (POF3-621)$$cPOF3-621$$fPOF III$$x0
000449197 536__ $$0G:(DE-HGF)2020_Join2-NFFA-Europe_funded$$aNFFA-Europe_supported - Technically supported by Nanoscience Foundries and Fine Analysis Europe (2020_Join2-NFFA-Europe_funded)$$c2020_Join2-NFFA-Europe_funded$$x1
000449197 588__ $$aDataset connected to CrossRef
000449197 693__ $$0EXP:(DE-H253)Nanolab-02-20150101$$1EXP:(DE-H253)DESY-NanoLab-20150101$$5EXP:(DE-H253)Nanolab-02-20150101$$aNanolab$$eDESY NanoLab: Surface Spectroscopy$$x0
000449197 693__ $$0EXP:(DE-H253)Nanolab-03-20150101$$1EXP:(DE-H253)DESY-NanoLab-20150101$$5EXP:(DE-H253)Nanolab-03-20150101$$aNanolab$$eDESY NanoLab: X-Ray Diffraction$$x1
000449197 7001_ $$0P:(DE-H253)PIP1083077$$aWagstaffe, Michael$$b1
000449197 7001_ $$0P:(DE-H253)PIP1016379$$aRobles, Eric$$b2
000449197 7001_ $$0P:(DE-HGF)0$$aPruneda, M.$$b3
000449197 7001_ $$0P:(DE-H253)PIP1018647$$aNoei, Heshmat$$b4
000449197 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2020.07.186$$gp. S0360319920327968$$n53$$p28996 - 29008$$tInternational journal of hydrogen energy$$v45$$x0360-3199$$y2020
000449197 8564_ $$uhttps://www.sciencedirect.com/science/article/abs/pii/S0360319920327968?via%3Dihub
000449197 8564_ $$uhttps://bib-pubdb1.desy.de/record/449197/files/HN%201-s2.0-S0360319920327968-main.pdf$$yRestricted
000449197 8564_ $$uhttps://bib-pubdb1.desy.de/record/449197/files/HN%201-s2.0-S0360319920327968-main.gif?subformat=icon$$xicon$$yRestricted
000449197 8564_ $$uhttps://bib-pubdb1.desy.de/record/449197/files/HN%201-s2.0-S0360319920327968-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000449197 8564_ $$uhttps://bib-pubdb1.desy.de/record/449197/files/HN%201-s2.0-S0360319920327968-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000449197 8564_ $$uhttps://bib-pubdb1.desy.de/record/449197/files/HN%201-s2.0-S0360319920327968-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000449197 8564_ $$uhttps://bib-pubdb1.desy.de/record/449197/files/HN%201-s2.0-S0360319920327968-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000449197 909CO $$ooai:bib-pubdb1.desy.de:449197$$pVDB$$qec_fundedresources
000449197 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1082706$$aExternal Institute$$b0$$kExtern
000449197 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1083077$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000449197 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1016379$$aExternal Institute$$b2$$kExtern
000449197 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1018647$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000449197 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6214$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000449197 9141_ $$y2020
000449197 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2018$$d2020-01-17
000449197 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000449197 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000449197 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-17
000449197 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-17
000449197 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-17
000449197 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000449197 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-17
000449197 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000449197 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000449197 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000449197 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-17
000449197 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-17
000449197 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000449197 9201_ $$0I:(DE-H253)FS-NL-20120731$$kFS-NL$$lNanolab$$x1
000449197 980__ $$ajournal
000449197 980__ $$aVDB
000449197 980__ $$aI:(DE-H253)HAS-User-20120731
000449197 980__ $$aI:(DE-H253)FS-NL-20120731
000449197 980__ $$aUNRESTRICTED