000442413 001__ 442413
000442413 005__ 20211222091640.0
000442413 0247_ $$2INSPIRETeX$$aAli:2020ksn
000442413 0247_ $$2inspire$$ainspire:1809852
000442413 0247_ $$2arXiv$$aarXiv:2008.00271
000442413 0247_ $$2datacite_doi$$a10.3204/PUBDB-2020-03045
000442413 037__ $$aPUBDB-2020-03045
000442413 041__ $$aEnglish
000442413 088__ $$2arXiv$$aarXiv:2008.00271
000442413 088__ $$2Other$$aACFI-T20-09
000442413 088__ $$2DESY$$aDESY-20-129
000442413 1001_ $$0P:(DE-H253)PIP1003110$$aAli, Ahmed$$b0
000442413 245__ $$aTransverse Energy-Energy Correlations of jets in the electron-proton Deep Inelastic Scattering at HERA
000442413 260__ $$c2020
000442413 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1616513731_21206
000442413 3367_ $$2ORCID$$aWORKING_PAPER
000442413 3367_ $$028$$2EndNote$$aElectronic Article
000442413 3367_ $$2DRIVER$$apreprint
000442413 3367_ $$2BibTeX$$aARTICLE
000442413 3367_ $$2DataCite$$aOutput Types/Working Paper
000442413 500__ $$a18 pages,11 figures
000442413 520__ $$aWe study the event shape variables, transverse energy energy correlation TEEC $(\cos \phi)$ and its asymmetry ATEEC $(\cos \phi)$ in deep inelastic scattering (DIS) at the electron-proton collider HERA, where $\phi$ is the angle between two jets defined using a transverse-momentum $(k_T)$ jet algorithm. At HERA, jets are defined in the Breit frame, and the leading nontrivial transverse energy energy correlations arise from the 3-jet configurations. With the help of the NLOJET++, these functions are calculated in the leading order (LO) and the next-to-leading order (NLO) approximations in QCD at the electron-proton center-of-mass energy $\sqrt{s}=314$ GeV. We restrict the angular region to $-0.8 \leq \cos \phi \leq 0.8$, as the forward- and backward-angular regions require resummed logarithmic corrections, which we have neglected in this work. Following experimental jet-analysis at HERA, we restrict the DIS-variables $x$, $y=Q^2/(x s)$, where $Q^2=-q^2$ is the negative of the momentum transfer squared $q^2$, to $0 \leq x \leq 1$, $0.2 \leq y \leq 0.6$, and the pseudo-rapidity variable in the laboratory frame $(\eta^{\rm {lab}})$ to the range $-1 \leq \eta^{\rm {lab}} \leq 2.5$. The TEEC and ATEEC functions are worked out for two ranges in $Q^2$, defined by $5.5~{\rm GeV}^2 \leq Q^2 \leq 80~{\rm GeV}^2$, called the low-$Q^2$-range, and $150~{\rm GeV}^2 \leq Q^2 \leq 1000~{\rm GeV}^2$, called the high-$Q^2$-range. We show the sensitivity of these functions on the parton distribution functions (PDFs), the factorization $(\mu_F)$ and renormalization $(\mu_R)$ scales, and on $\alpha_s(M_Z)$. Of these the correlations are stable against varying the scale $\mu_F$ and the PDFs, but they do depend on $\mu_R$. These studies are useful in the analysis of the HERA data, including the determination of $\alpha_s(M_Z)$ from the shape variables.
000442413 536__ $$0G:(DE-HGF)POF3-611$$a611 - Fundamental Particles and Forces (POF3-611)$$cPOF3-611$$fPOF III$$x0
000442413 588__ $$aDataset connected to INSPIRE
000442413 650_7 $$2autogen$$aparton: distribution function
000442413 650_7 $$2autogen$$ajet: correlation
000442413 650_7 $$2autogen$$aelectron p: deep inelastic scattering
000442413 650_7 $$2autogen$$atrack data analysis: jet
000442413 650_7 $$2autogen$$ahigher-order: 0
000442413 650_7 $$2autogen$$ahigher-order: 1
000442413 650_7 $$2autogen$$aDESY HERA Stor
000442413 650_7 $$2autogen$$atransverse energy
000442413 650_7 $$2autogen$$aquantum chromodynamics
000442413 650_7 $$2autogen$$aevent shape analysis
000442413 650_7 $$2autogen$$atransverse momentum
000442413 650_7 $$2autogen$$amomentum transfer
000442413 650_7 $$2autogen$$arenormalization
000442413 650_7 $$2autogen$$afactorization
000442413 650_7 $$2autogen$$aBreit frame
000442413 650_7 $$2autogen$$asensitivity
000442413 650_7 $$2autogen$$atransverse
000442413 650_7 $$2autogen$$astability
000442413 650_7 $$2autogen$$aasymmetry
000442413 693__ $$0EXP:(DE-588)4611933-4$$1EXP:(DE-588)4159571-3$$5EXP:(DE-588)4611933-4$$aHERA$$eHERA: HERA-B$$x0
000442413 7001_ $$0P:(DE-HGF)0$$aLi, Gang$$b1
000442413 7001_ $$0P:(DE-HGF)0$$aWang, Wei$$b2
000442413 7001_ $$0P:(DE-HGF)0$$aXing, Zhi-Peng$$b3
000442413 773__ $$p1-18
000442413 8564_ $$uhttps://bib-pubdb1.desy.de/record/442413/files/2008.00271.pdf$$yOpenAccess
000442413 8564_ $$uhttps://bib-pubdb1.desy.de/record/442413/files/2008.00271.gif?subformat=icon$$xicon$$yOpenAccess
000442413 8564_ $$uhttps://bib-pubdb1.desy.de/record/442413/files/2008.00271.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000442413 8564_ $$uhttps://bib-pubdb1.desy.de/record/442413/files/2008.00271.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000442413 8564_ $$uhttps://bib-pubdb1.desy.de/record/442413/files/2008.00271.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000442413 909CO $$ooai:bib-pubdb1.desy.de:442413$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000442413 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1003110$$aExternal Institute$$b0$$kExtern
000442413 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003110$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000442413 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000442413 9131_ $$0G:(DE-HGF)POF3-611$$1G:(DE-HGF)POF3-610$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Universum$$vFundamental Particles and Forces$$x0
000442413 9132_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000442413 9141_ $$y2020
000442413 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000442413 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished
000442413 9201_ $$0I:(DE-H253)HERA-B-20120731$$kHERA-B$$lHera-B Kollaboration$$x0
000442413 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x1
000442413 980__ $$apreprint
000442413 980__ $$aVDB
000442413 980__ $$aUNRESTRICTED
000442413 980__ $$aI:(DE-H253)HERA-B-20120731
000442413 980__ $$aI:(DE-H253)T-20120731
000442413 9801_ $$aFullTexts