000441952 001__ 441952
000441952 005__ 20250729150553.0
000441952 0247_ $$2doi$$a10.1016/j.optmat.2020.109751
000441952 0247_ $$2ISSN$$a0925-3467
000441952 0247_ $$2ISSN$$a1873-1252
000441952 0247_ $$2WOS$$aWOS:000539377300001
000441952 0247_ $$2openalex$$aopenalex:W3027716181
000441952 037__ $$aPUBDB-2020-02820
000441952 041__ $$aEnglish
000441952 082__ $$a670
000441952 1001_ $$0P:(DE-H253)PIP1009228$$aZorenko, T.$$b0$$eCorresponding author
000441952 245__ $$aComparison of the luminescent properties of LuAG:Ce films grown by pulse laser deposition and liquid phase epitaxy methods using synchrotron radiation excitation
000441952 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000441952 3367_ $$2DRIVER$$aarticle
000441952 3367_ $$2DataCite$$aOutput Types/Journal article
000441952 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637150094_3908
000441952 3367_ $$2BibTeX$$aARTICLE
000441952 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000441952 3367_ $$00$$2EndNote$$aJournal Article
000441952 500__ $$aWaiting for fulltext
000441952 520__ $$aThe paper is dedicated to the comparative study of the luminescent properties of LuAG:Ce films, grown by pulse laser deposition (PLD) and liquid phase epitaxy (LPE) methods, using the time-resolved luminescent spectroscopy under excitation by synchrotron radiation in the fundamental absorption range and above the band gap of LuAG host. We have shown the similarities and differences in the luminescence properties of LuAG:Ce PLD and LPE grown films. Specifically, the luminescence of Lu$_{Al}$ antisite defects is absent in the emission spectra of both films in the room temperature range. Meanwhile, the low intensive bands peaked at 350 and 400 nm, corresponding to the luminescence of excitons localized around and bound with F$^{+}$ centers, respectively, are present in the emission spectra of LuAG:Ce PLD films at 12 K. The energy of formation of the excitons bound with the Ce$^{3+}$ ions, being equal to 7.52 eV at 12 K, and the energy of the onset of interband transitions of LuAG host, being equal to 7.76 eV (at 300 K), have been found for LuAG:Ce LPE and PLD films, respectively. We have also found that the scintillation properties of LuAG:Ce PDL film are worse in comparison with LPE grown film analogue due to the significantly larger content of the slow emission component in the scintillation decay under high-energy excitation. Such differences between the optical and scintillation properties of PLD and LPE films are caused by the diffe rent conditions of their preparation (in vacuum and in air).
000441952 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000441952 588__ $$aDataset connected to CrossRef
000441952 693__ $$0EXP:(DE-H253)D-I-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-I-20150101$$aDORIS III$$fDORIS Beamline I$$x0
000441952 7001_ $$0P:(DE-HGF)0$$aGorbenko, V.$$b1
000441952 7001_ $$aVozniak, T.$$b2
000441952 7001_ $$aHeinrich, S.$$b3
000441952 7001_ $$0P:(DE-H253)PIP1007873$$aHuber, G.$$b4
000441952 7001_ $$0P:(DE-H253)PIP1009172$$aZorenko, Yu.$$b5$$eCorresponding author
000441952 773__ $$0PERI:(DE-600)2015659-5$$a10.1016/j.optmat.2020.109751$$gVol. 105, p. 109751 -$$p109751$$tOptical materials$$v105$$x0925-3467$$y2020
000441952 8564_ $$uhttps://www.sciencedirect.com/science/article/abs/pii/S0925346720301026
000441952 909CO $$ooai:bib-pubdb1.desy.de:441952$$pVDB
000441952 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1009228$$aExternal Institute$$b0$$kExtern
000441952 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007873$$aExternal Institute$$b4$$kExtern
000441952 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1009172$$aExternal Institute$$b5$$kExtern
000441952 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000441952 9141_ $$y2020
000441952 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-09$$wger
000441952 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-09
000441952 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-09
000441952 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-09
000441952 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-09
000441952 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-09
000441952 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-09
000441952 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-09
000441952 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-09
000441952 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bOPT MATER : 2018$$d2020-01-09
000441952 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-09
000441952 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-09
000441952 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-09
000441952 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-09
000441952 9201_ $$0I:(DE-H253)FS-DO-20120731$$kFS-DO$$lFS-Experimentebetreuung DORIS$$x0
000441952 980__ $$ajournal
000441952 980__ $$aVDB
000441952 980__ $$aI:(DE-H253)FS-DO-20120731
000441952 980__ $$aUNRESTRICTED