000441139 001__ 441139
000441139 005__ 20250716152012.0
000441139 0247_ $$2doi$$a10.1021/acs.jpcc.0c02809
000441139 0247_ $$2ISSN$$a1932-7447
000441139 0247_ $$2ISSN$$a1932-7455
000441139 0247_ $$2WOS$$aWOS:000541745800040
000441139 0247_ $$2openalex$$aopenalex:W3025690853
000441139 037__ $$aPUBDB-2020-02336
000441139 041__ $$aEnglish
000441139 082__ $$a530
000441139 1001_ $$0P:(DE-H253)PIP1083077$$aWagstaffe, Michael$$b0
000441139 245__ $$aElucidating the Defect-Induced Changes in the Photocatalytic Activity of $TiO_{2}$
000441139 260__ $$aWashington, DC$$bSoc.$$c2020
000441139 3367_ $$2DRIVER$$aarticle
000441139 3367_ $$2DataCite$$aOutput Types/Journal article
000441139 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1630515589_13881
000441139 3367_ $$2BibTeX$$aARTICLE
000441139 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000441139 3367_ $$00$$2EndNote$$aJournal Article
000441139 500__ $$aWaiting for fulltext
000441139 520__ $$aThe adsorption and subsequent photo-oxidation ofcarbon monoxide on the anatase TiO2(101) and rutile TiO2(110)single crystal surfaces was investigated using low temperature X-rayphotoelectron spectroscopy. Anatase was shown to significantlyoutperform rutile in terms of the rate of carbon dioxide yield onthe stoichiometric surface, and further to this, the presence ofdefects was shown to heavily influence the photocatalyticefficiency. The oxidation rate was reduced on anatase but increasedon rutile. This change is attributed to the location of defects withinthe crystal structure and is further discussed in this work. Thesefindings are of significant importance and demonstrate the possibilities of defect engineering in photocatalysis.
000441139 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x0
000441139 536__ $$0G:(DE-HGF)POF3-6G2$$a6G2 - FLASH (POF3-622)$$cPOF3-622$$fPOF III$$x1
000441139 536__ $$0G:(GEPRIS)318017425$$aSFB 986 A07 - Adsorption organischer Säuren auf Oxidoberflächen und Nanostrukturen (A07) (318017425)$$c318017425$$x2
000441139 536__ $$0G:(GEPRIS)390715994$$aAIM - CUI: Advanced Imaging of Matter (390715994)$$c390715994$$fDFG EXC 2056$$x3
000441139 588__ $$aDataset connected to CrossRef
000441139 693__ $$0EXP:(DE-H253)F-PG2-20150101$$1EXP:(DE-H253)FLASH-20150101$$6EXP:(DE-H253)F-PG2-20150101$$aFLASH$$fFLASH Beamline PG2$$x0
000441139 693__ $$0EXP:(DE-H253)Nanolab-02-20150101$$1EXP:(DE-H253)DESY-NanoLab-20150101$$5EXP:(DE-H253)Nanolab-02-20150101$$aNanolab$$eDESY NanoLab: Surface Spectroscopy$$x1
000441139 7001_ $$0P:(DE-H253)PIP1018647$$aNoei, Heshmat$$b1$$eCorresponding author
000441139 7001_ $$0P:(DE-H253)PIP1012873$$aStierle, Andreas$$b2
000441139 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.0c02809$$gVol. 124, no. 23, p. 12539 - 12547$$n23$$p12539 - 12547$$tThe journal of physical chemistry <Washington, DC> / C$$v124$$x1932-7455$$y2020
000441139 8564_ $$uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.0c02809
000441139 8564_ $$uhttps://bib-pubdb1.desy.de/record/441139/files/acs.jpcc.0c02809.pdf$$yRestricted
000441139 8564_ $$uhttps://bib-pubdb1.desy.de/record/441139/files/acs.jpcc.0c02809.gif?subformat=icon$$xicon$$yRestricted
000441139 8564_ $$uhttps://bib-pubdb1.desy.de/record/441139/files/acs.jpcc.0c02809.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000441139 8564_ $$uhttps://bib-pubdb1.desy.de/record/441139/files/acs.jpcc.0c02809.jpg?subformat=icon-180$$xicon-180$$yRestricted
000441139 8564_ $$uhttps://bib-pubdb1.desy.de/record/441139/files/acs.jpcc.0c02809.jpg?subformat=icon-640$$xicon-640$$yRestricted
000441139 8564_ $$uhttps://bib-pubdb1.desy.de/record/441139/files/acs.jpcc.0c02809.pdf?subformat=pdfa$$xpdfa$$yRestricted
000441139 909CO $$ooai:bib-pubdb1.desy.de:441139$$pVDB
000441139 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1083077$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000441139 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1018647$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000441139 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1012873$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000441139 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000441139 9131_ $$0G:(DE-HGF)POF3-622$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G2$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Research on Matter with Brilliant Light Sources$$x1
000441139 9141_ $$y2020
000441139 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2018$$d2020-02-27
000441139 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000441139 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000441139 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000441139 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000441139 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000441139 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000441139 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000441139 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27
000441139 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-27
000441139 9201_ $$0I:(DE-H253)FS-NL-20120731$$kFS-NL$$lNanolab$$x0
000441139 980__ $$ajournal
000441139 980__ $$aVDB
000441139 980__ $$aI:(DE-H253)FS-NL-20120731
000441139 980__ $$aUNRESTRICTED