001     438251
005     20211110160459.0
024 7 _ |a arXiv:2005.03389
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2020-01763
|2 datacite_doi
037 _ _ |a PUBDB-2020-01763
041 _ _ |a English
100 1 _ |a Trost, Fabian
|0 P:(DE-H253)PIP1082226
|b 0
|e Corresponding author
|u desy
245 _ _ |a Photon statistics and signal to noise ratio for incoherent diffraction imaging
260 _ _ |c 2020
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1590591116_31821
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Intensity interferometry is a well known method in astronomy. Recently, a related method called incoherent diffractive imaging (IDI) was proposed to apply intensity correlations of x-ray fluorescence radiation to determine the 3D arrangement of the emitting atoms in a sample. Here we discuss inherent sources of noise affecting IDI and derive a model to estimate the dependence of the signal to noise ratio (SNR) on the photon counts per pixel, the temporal coherence (or number of modes), and the shape of the imaged object. Simulations in two- and three-dimensions have been performed to validate the predictions of the model. We find that contrary to coherent imaging methods, higher intensities and higher detected counts do not always correspond to a larger SNR. Also, larger and more complex objects generally yield a poorer SNR despite the higher measured counts. The framework developed here should be a valuable guide to future experimental design.
536 _ _ |a 6215 - Soft Matter, Health and Life Sciences (POF3-621)
|0 G:(DE-HGF)POF3-6215
|c POF3-621
|f POF III
|x 0
536 _ _ |a AIM - CUI: Advanced Imaging of Matter (390715994)
|0 G:(GEPRIS)390715994
|c 390715994
|f DFG EXC 2056
|x 1
588 _ _ |a Dataset connected to arXivarXiv
693 _ _ |0 EXP:(DE-H253)CFEL-Exp-20150101
|5 EXP:(DE-H253)CFEL-Exp-20150101
|e Experiments at CFEL
|x 0
700 1 _ |a Ayyer, Kartik
|0 P:(DE-H253)PIP1023449
|b 1
700 1 _ |a Chapman, Henry
|0 P:(DE-H253)PIP1006324
|b 2
|u desy
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/438251/files/IDI_photon_statistics_and_SNR__paper___Copy_-4.pdf
856 4 _ |y OpenAccess
|x icon
|u https://bib-pubdb1.desy.de/record/438251/files/IDI_photon_statistics_and_SNR__paper___Copy_-4.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://bib-pubdb1.desy.de/record/438251/files/IDI_photon_statistics_and_SNR__paper___Copy_-4.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://bib-pubdb1.desy.de/record/438251/files/IDI_photon_statistics_and_SNR__paper___Copy_-4.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://bib-pubdb1.desy.de/record/438251/files/IDI_photon_statistics_and_SNR__paper___Copy_-4.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/438251/files/IDI_photon_statistics_and_SNR__paper___Copy_-4.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:438251
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1082226
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 0
|6 P:(DE-H253)PIP1082226
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 1
|6 P:(DE-H253)PIP1023449
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 1
|6 P:(DE-H253)PIP1023449
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 1
|6 P:(DE-H253)PIP1023449
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 1
|6 P:(DE-H253)PIP1023449
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1006324
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 2
|6 P:(DE-H253)PIP1006324
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6215
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Published
|0 StatID:(DE-HGF)0580
|2 StatID
920 1 _ |0 I:(DE-H253)CFEL-I-20161114
|k CFEL-I
|l FS-CFEL-1 (Group Leader: Henry Chapman)
|x 0
920 1 _ |0 I:(DE-H253)FS-CFEL-1-20120731
|k FS-CFEL-1
|l CFEL-Coherent X-Ray Imaging
|x 1
920 1 _ |0 I:(DE-H253)CFEL-CNI-20190417
|k CFEL-CNI
|l Computational Nanoscale Imaging
|x 2
920 1 _ |0 I:(DE-H253)UNI_CUI-20121230
|k UNI/CUI
|l beauftragt von UNI
|x 3
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CFEL-I-20161114
980 _ _ |a I:(DE-H253)FS-CFEL-1-20120731
980 _ _ |a I:(DE-H253)CFEL-CNI-20190417
980 _ _ |a I:(DE-H253)UNI_CUI-20121230
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21