000438251 001__ 438251
000438251 005__ 20211110160459.0
000438251 0247_ $$2arXiv$$aarXiv:2005.03389
000438251 0247_ $$2datacite_doi$$a10.3204/PUBDB-2020-01763
000438251 037__ $$aPUBDB-2020-01763
000438251 041__ $$aEnglish
000438251 1001_ $$0P:(DE-H253)PIP1082226$$aTrost, Fabian$$b0$$eCorresponding author$$udesy
000438251 245__ $$aPhoton statistics and signal to noise ratio for incoherent diffraction imaging
000438251 260__ $$c2020
000438251 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1590591116_31821
000438251 3367_ $$2ORCID$$aWORKING_PAPER
000438251 3367_ $$028$$2EndNote$$aElectronic Article
000438251 3367_ $$2DRIVER$$apreprint
000438251 3367_ $$2BibTeX$$aARTICLE
000438251 3367_ $$2DataCite$$aOutput Types/Working Paper
000438251 520__ $$aIntensity interferometry is a well known method in astronomy. Recently, a related method called incoherent diffractive imaging (IDI) was proposed to apply intensity correlations of x-ray fluorescence radiation to determine the 3D arrangement of the emitting atoms in a sample. Here we discuss inherent sources of noise affecting IDI and derive a model to estimate the dependence of the signal to noise ratio (SNR) on the photon counts per pixel, the temporal coherence (or number of modes), and the shape of the imaged object. Simulations in two- and three-dimensions have been performed to validate the predictions of the model. We find that contrary to coherent imaging methods, higher intensities and higher detected counts do not always correspond to a larger SNR. Also, larger and more complex objects generally yield a poorer SNR despite the higher measured counts. The framework developed here should be a valuable guide to future experimental design.
000438251 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x0
000438251 536__ $$0G:(GEPRIS)390715994$$aAIM - CUI: Advanced Imaging of Matter (390715994)$$c390715994$$fDFG EXC 2056$$x1
000438251 588__ $$aDataset connected to arXivarXiv
000438251 693__ $$0EXP:(DE-H253)CFEL-Exp-20150101$$5EXP:(DE-H253)CFEL-Exp-20150101$$eExperiments at CFEL$$x0
000438251 7001_ $$0P:(DE-H253)PIP1023449$$aAyyer, Kartik$$b1
000438251 7001_ $$0P:(DE-H253)PIP1006324$$aChapman, Henry$$b2$$udesy
000438251 8564_ $$uhttps://bib-pubdb1.desy.de/record/438251/files/IDI_photon_statistics_and_SNR__paper___Copy_-4.pdf$$yOpenAccess
000438251 8564_ $$uhttps://bib-pubdb1.desy.de/record/438251/files/IDI_photon_statistics_and_SNR__paper___Copy_-4.gif?subformat=icon$$xicon$$yOpenAccess
000438251 8564_ $$uhttps://bib-pubdb1.desy.de/record/438251/files/IDI_photon_statistics_and_SNR__paper___Copy_-4.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000438251 8564_ $$uhttps://bib-pubdb1.desy.de/record/438251/files/IDI_photon_statistics_and_SNR__paper___Copy_-4.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000438251 8564_ $$uhttps://bib-pubdb1.desy.de/record/438251/files/IDI_photon_statistics_and_SNR__paper___Copy_-4.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000438251 8564_ $$uhttps://bib-pubdb1.desy.de/record/438251/files/IDI_photon_statistics_and_SNR__paper___Copy_-4.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000438251 909CO $$ooai:bib-pubdb1.desy.de:438251$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000438251 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1082226$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000438251 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1082226$$aCentre for Free-Electron Laser Science$$b0$$kCFEL
000438251 9101_ $$0I:(DE-588b)2019024-4$$6P:(DE-H253)PIP1023449$$aMax-Planck-Gesellschaft zur Förderung der Wissenschaften$$b1$$kMPG
000438251 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1023449$$aCentre for Free-Electron Laser Science$$b1$$kCFEL
000438251 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-H253)PIP1023449$$aEuropean Molecular Biology Laboratory$$b1$$kEMBL
000438251 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1023449$$aEuropean XFEL$$b1$$kXFEL.EU
000438251 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006324$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000438251 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1006324$$aCentre for Free-Electron Laser Science$$b2$$kCFEL
000438251 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000438251 9141_ $$y2020
000438251 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000438251 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished
000438251 9201_ $$0I:(DE-H253)CFEL-I-20161114$$kCFEL-I$$lFS-CFEL-1 (Group Leader: Henry Chapman)$$x0
000438251 9201_ $$0I:(DE-H253)FS-CFEL-1-20120731$$kFS-CFEL-1$$lCFEL-Coherent X-Ray Imaging$$x1
000438251 9201_ $$0I:(DE-H253)CFEL-CNI-20190417$$kCFEL-CNI$$lComputational Nanoscale Imaging$$x2
000438251 9201_ $$0I:(DE-H253)UNI_CUI-20121230$$kUNI/CUI$$lbeauftragt von UNI$$x3
000438251 980__ $$apreprint
000438251 980__ $$aVDB
000438251 980__ $$aUNRESTRICTED
000438251 980__ $$aI:(DE-H253)CFEL-I-20161114
000438251 980__ $$aI:(DE-H253)FS-CFEL-1-20120731
000438251 980__ $$aI:(DE-H253)CFEL-CNI-20190417
000438251 980__ $$aI:(DE-H253)UNI_CUI-20121230
000438251 9801_ $$aFullTexts