001     435829
005     20250803051600.0
024 7 _ |a 10.1063/1.5130031
|2 doi
024 7 _ |a 10.3204/PUBDB-2020-00811
|2 datacite_doi
024 7 _ |a WOS:000525829300082
|2 WOS
024 7 _ |a openalex:W3103905527
|2 openalex
024 7 _ |a altmetric:74342795
|2 altmetric
037 _ _ |a PUBDB-2020-00811
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Moskaltsova, Anastasiia
|0 P:(DE-H253)PIP1082240
|b 0
|e Corresponding author
111 2 _ |a MMM 2019
245 _ _ |a Impact of the magnetic proximity effect in Pt on the total magnetic moment of Pt/Co/Ta trilayers studied by x-ray resonant magnetic reflectivity
260 _ _ |a New York, NY
|c 2020
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Contribution to a conference proceedings
|0 PUB:(DE-HGF)8
|2 PUB:(DE-HGF)
|m contrib
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1663066753_23700
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this work, we study the influence of the magnetic proximity effect (MPE) in Pt on the total magnetic moment of thin film trilayer systems consisting of the ferromagnet (FM) Co adjacent to the heavy metals (HMs) Pt and Ta. We investigate the trilayer systems HM1/FM/HM2 with different stacking order as well as a reference bilayer without any MPE. X-ray resonant magnetic reflectivity (XRMR) is a powerful tool to probe induced magnetism, especially when buried at interfaces in a multilayer. By using XRMR, we are able to obtain magnetic depth profiles of the structural, optical and magnetic parameters. By fitting the experimental data with a Gaussian-like magnetooptic profile taking the structural roughness at the interface into account, we can extract the magnetic moment of the spin-polarized layer. Comparing the obtained moments to the measured total moment of the sample, we can determine the impact of the MPE on the total magnetic moment of the system. Such information can be critical for analyzing spin transport experiments, including spin-orbit torque and spin Hall angle measurements, where the saturation magnetization Ms has to be taken into account. Therefore, by combining magnetization measurements and XRMR methods we were able to get a complete picture of the magnetic moment distribution in these trilayer systems containing spin-polarized Pt.
536 _ _ |a 6G3 - PETRA III (POF3-622)
|0 G:(DE-HGF)POF3-6G3
|c POF3-622
|f POF III
|x 0
536 _ _ |a FS-Proposal: II-20190009 (II-20190009)
|0 G:(DE-H253)II-20190009
|c II-20190009
|x 1
536 _ _ |a FS-Proposal: II-20170016 (II-20170016)
|0 G:(DE-H253)II-20170016
|c II-20170016
|x 2
588 _ _ |a Dataset connected to CrossRef
693 _ _ |a PETRA III
|f PETRA Beamline P09
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P09-20150101
|6 EXP:(DE-H253)P-P09-20150101
|x 0
700 1 _ |a Krieft, Jan
|0 P:(DE-H253)PIP1082238
|b 1
700 1 _ |a Graulich, Dominik
|0 P:(DE-H253)PIP1084647
|b 2
700 1 _ |a Matalla-Wagner, Tristan
|0 0000-0001-5791-5875
|b 3
700 1 _ |a Kuschel, Timo
|b 4
773 _ _ |a 10.1063/1.5130031
|g Vol. 10, no. 1, p. 015154 -
|0 PERI:(DE-600)2583909-3
|n 1
|p 015154
|t AIP Advances
|v 10
|y 2020
|x 2158-3226
856 4 _ |u https://bib-pubdb1.desy.de/record/435829/files/1.5130031.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/435829/files/1.5130031.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/435829/files/1.5130031.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/435829/files/1.5130031.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/435829/files/1.5130031.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/435829/files/1.5130031.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:435829
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1082240
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1082238
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1084647
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-622
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Facility topic: Research on Matter with Brilliant Light Sources
|9 G:(DE-HGF)POF3-6G3
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AIP ADV : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a contrib
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21