Home > Publications database > Towards high power longwave mid-IR frequency combs: power scalability of high repetition-rate difference-frequency generation > print |
001 | 434790 | ||
005 | 20250729150102.0 | ||
024 | 7 | _ | |a 10.1364/OE.28.001369 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2020-00333 |2 datacite_doi |
024 | 7 | _ | |a pmid:32121849 |2 pmid |
024 | 7 | _ | |a WOS:000513232200046 |2 WOS |
024 | 7 | _ | |a openalex:W3000712877 |2 openalex |
037 | _ | _ | |a PUBDB-2020-00333 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Cao, Qian |0 P:(DE-H253)PIP1023168 |b 0 |
245 | _ | _ | |a Towards high power longwave mid-IR frequency combs: power scalability of high repetition-rate difference-frequency generation |
260 | _ | _ | |a Washington, DC |c 2020 |b Optica |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1718874306_450677 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Frequency combs in the mid-IR wavelength are usually implemented by difference-frequency generation (DFG) that mixes pump pulses and signal pulses. Different from most optical parametric amplifiers that operate at a typical low repetition rate of <0.1 MHz, mid-IR frequency combs require that pump/signal pulse repetition rate must be at least as high as tens of MHz (normally >30 MHz). The DFG mixing high repetition rate (HRR) pulses limits the allowed pulse energy to prevent crystal damage. In this paper, we numerically investigate HRR DFG with a focus on the energy scalability of idler pulses. We show that HRR DFG–unlike optical parametric amplifiers–may operate in the linear regime, in which the idler pulse energy scales linearly with respect to the pump/signal pulse energy. Our simulation results suggest an efficient approach to energy scaling the idler mid-IR pulses in a HRR DFG: increase the signal pulse energy to the same level as the pump pulse energy. We also show that DFG seeded by pump/signal pulses at ∼2-µm range benefits from reduced group-velocity mismatch and exhibits better idler energy scalability. For example, 44.2-nJ pulses at 9.87 µm can be achieved by mixing 500-nJ, 2.0-µm pump pulses and 100-nJ, 2.508-µm signal pulses in a 2-mm-thick GaSe crystal. At the end of this paper, we show that such high-energy signal pulses can be derived from the pump pulses using a recently invented fiber-optic method. Therefore, implementation of high-power (>2 W) longwave mid-IR frequency combs is practically feasible. |
536 | _ | _ | |a 6211 - Extreme States of Matter: From Cold Ions to Hot Plasmas (POF3-621) |0 G:(DE-HGF)POF3-6211 |c POF3-621 |f POF III |x 0 |
536 | _ | _ | |a VH-NG-804 - Towards Laboratory-Based Ultrafast Bright EUV and X-ray Sources (2015_IVF-VH-NG-804) |0 G:(DE-HGF)2015_IVF-VH-NG-804 |c 2015_IVF-VH-NG-804 |x 1 |
536 | _ | _ | |a HCJRG-201 - Advanced Laser Technologies for Ultrafast Spectroscopy of Quantum Materials (2015_IFV-HCJRG-201) |0 G:(DE-HGF)2015_IFV-HCJRG-201 |c 2015_IFV-HCJRG-201 |x 2 |
536 | _ | _ | |a DFG project 390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994) |0 G:(GEPRIS)390715994 |c 390715994 |x 3 |
536 | _ | _ | |a DFG project 194651731 - EXC 1074: Hamburger Zentrum für ultraschnelle Beobachtung (CUI): Struktur, Dynamik und Kontrolle von Materie auf atomarer Skala (194651731) |0 G:(GEPRIS)194651731 |c 194651731 |x 4 |
588 | _ | _ | |a Dataset connected to CrossRef |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Kärtner, Franz |0 P:(DE-H253)PIP1013198 |b 1 |u desy |
700 | 1 | _ | |a Chang, Guoqing |0 P:(DE-H253)PIP1017633 |b 2 |e Corresponding author |
773 | _ | _ | |a 10.1364/OE.28.001369 |g Vol. 28, no. 2, p. 1369 - |0 PERI:(DE-600)1491859-6 |n 2 |p 1369 - 1384 |t Optics express |v 28 |y 2020 |x 1094-4087 |
856 | 4 | _ | |u https://www.osapublishing.org/oe/abstract.cfm?uri=oe-28-2-1369 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/434790/files/oe-28-2-1369.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/434790/files/oe-28-2-1369.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/434790/files/oe-28-2-1369.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/434790/files/oe-28-2-1369.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/434790/files/oe-28-2-1369.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/434790/files/oe-28-2-1369.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:434790 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |q ec_fundedresources |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 0 |6 P:(DE-H253)PIP1023168 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1023168 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1013198 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 1 |6 P:(DE-H253)PIP1013198 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1013198 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 2 |6 P:(DE-H253)PIP1017633 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1017633 |
910 | 1 | _ | |a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences |0 I:(DE-HGF)0 |b 2 |6 P:(DE-H253)PIP1017633 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-621 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |4 G:(DE-HGF)POF |v In-house research on the structure, dynamics and function of matter |9 G:(DE-HGF)POF3-6211 |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b OPT EXPRESS : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b OPT EXPRESS : 2022 |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-03-08T13:52:11Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-03-08T13:52:11Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-03-08T13:52:11Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-21 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-21 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-21 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-21 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-21 |
920 | 1 | _ | |0 I:(DE-H253)CFEL-UFOX-20160927 |k CFEL-UFOX |l FS-CFEL-2 |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-CFEL-2-20120731 |k FS-CFEL-2 |l Ultrafast Lasers & X-rays Division |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)CFEL-UFOX-20160927 |
980 | _ | _ | |a I:(DE-H253)FS-CFEL-2-20120731 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|