001     434677
005     20250729163323.0
024 7 _ |a 10.1007/s00220-019-03617-y
|2 doi
024 7 _ |a 0010-3616
|2 ISSN
024 7 _ |a 1432-0916
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2020-00238
|2 datacite_doi
024 7 _ |a WOS:000494770400001
|2 WOS
024 7 _ |a openalex:W2983816558
|2 openalex
037 _ _ |a PUBDB-2020-00238
041 _ _ |a English
082 _ _ |a 510
100 1 _ |a Coman-Lohi, Ioana
|0 P:(DE-H253)PIP1021430
|b 0
|e Corresponding author
245 _ _ |a Toda Conformal Blocks, Quantum Groups, and Flat Connections
260 _ _ |a Heidelberg
|c 2019
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1592650326_31497
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a © The Author(s)
520 _ _ |a This paper investigates the relations between the Toda conformal field theories,quantum group theory and the quantisation of moduli spaces of flat connections.We use the free field representation of theW-algebras to define natural bases for spacesof conformal blocks of the Toda conformal field theory associated to the Lie algebrasl3 on the three-punctured sphere with representations of generic type associated to thethree punctures. The operator-valued monodromies of degenerate fields can be used todescribe the quantisation of the moduli spaces of flat SL(3)-connections. It is shown thatthe matrix elements of the monodromies can be expressed as Laurent polynomials ofmore elementary operatorswhich have a simple definition in the free field representation.These operators are identified as quantised counterparts of natural higher rank analogsof the Fenchel–Nielsen coordinates from Teichmüller theory. Possible applications tothe study of the non-Lagrangian SUSY field theories are briefly outlined.
536 _ _ |a 611 - Fundamental Particles and Forces (POF3-611)
|0 G:(DE-HGF)POF3-611
|c POF3-611
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Pomoni, Elli
|0 P:(DE-H253)PIP1018308
|b 1
700 1 _ |a Teschner, Jörg
|0 P:(DE-H253)PIP1005175
|b 2
773 _ _ |a 10.1007/s00220-019-03617-y
|0 PERI:(DE-600)1458931-x
|p -
|t Communications in mathematical physics
|v -
|y 2019
|x 1432-0916
856 4 _ |u https://bib-pubdb1.desy.de/record/434677/files/Coman2019_Article_TodaConformalBlocksQuantumGrou.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/434677/files/Coman2019_Article_TodaConformalBlocksQuantumGrou.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/434677/files/Coman2019_Article_TodaConformalBlocksQuantumGrou.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/434677/files/Coman2019_Article_TodaConformalBlocksQuantumGrou.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/434677/files/Coman2019_Article_TodaConformalBlocksQuantumGrou.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/434677/files/Coman2019_Article_TodaConformalBlocksQuantumGrou.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:434677
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1018308
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1005175
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Universum
|1 G:(DE-HGF)POF3-610
|0 G:(DE-HGF)POF3-611
|2 G:(DE-HGF)POF3-600
|v Fundamental Particles and Forces
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMMUN MATH PHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-H253)T-20120731
|k T
|l Theorie-Gruppe
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)T-20120731
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21