000434677 001__ 434677
000434677 005__ 20250729163323.0
000434677 0247_ $$2doi$$a10.1007/s00220-019-03617-y
000434677 0247_ $$2ISSN$$a0010-3616
000434677 0247_ $$2ISSN$$a1432-0916
000434677 0247_ $$2datacite_doi$$a10.3204/PUBDB-2020-00238
000434677 0247_ $$2WOS$$aWOS:000494770400001
000434677 0247_ $$2openalex$$aopenalex:W2983816558
000434677 037__ $$aPUBDB-2020-00238
000434677 041__ $$aEnglish
000434677 082__ $$a510
000434677 1001_ $$0P:(DE-H253)PIP1021430$$aComan-Lohi, Ioana$$b0$$eCorresponding author
000434677 245__ $$aToda Conformal Blocks, Quantum Groups, and Flat Connections
000434677 260__ $$aHeidelberg$$bSpringer$$c2019
000434677 3367_ $$2DRIVER$$aarticle
000434677 3367_ $$2DataCite$$aOutput Types/Journal article
000434677 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1592650326_31497
000434677 3367_ $$2BibTeX$$aARTICLE
000434677 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000434677 3367_ $$00$$2EndNote$$aJournal Article
000434677 500__ $$a© The Author(s)
000434677 520__ $$aThis paper investigates the relations between the Toda conformal field theories,quantum group theory and the quantisation of moduli spaces of flat connections.We use the free field representation of theW-algebras to define natural bases for spacesof conformal blocks of the Toda conformal field theory associated to the Lie algebrasl3 on the three-punctured sphere with representations of generic type associated to thethree punctures. The operator-valued monodromies of degenerate fields can be used todescribe the quantisation of the moduli spaces of flat SL(3)-connections. It is shown thatthe matrix elements of the monodromies can be expressed as Laurent polynomials ofmore elementary operatorswhich have a simple definition in the free field representation.These operators are identified as quantised counterparts of natural higher rank analogsof the Fenchel–Nielsen coordinates from Teichmüller theory. Possible applications tothe study of the non-Lagrangian SUSY field theories are briefly outlined.
000434677 536__ $$0G:(DE-HGF)POF3-611$$a611 - Fundamental Particles and Forces (POF3-611)$$cPOF3-611$$fPOF III$$x0
000434677 588__ $$aDataset connected to CrossRef
000434677 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000434677 7001_ $$0P:(DE-H253)PIP1018308$$aPomoni, Elli$$b1
000434677 7001_ $$0P:(DE-H253)PIP1005175$$aTeschner, Jörg$$b2
000434677 773__ $$0PERI:(DE-600)1458931-x$$a10.1007/s00220-019-03617-y$$p-$$tCommunications in mathematical physics$$v-$$x1432-0916$$y2019
000434677 8564_ $$uhttps://bib-pubdb1.desy.de/record/434677/files/Coman2019_Article_TodaConformalBlocksQuantumGrou.pdf$$yOpenAccess
000434677 8564_ $$uhttps://bib-pubdb1.desy.de/record/434677/files/Coman2019_Article_TodaConformalBlocksQuantumGrou.gif?subformat=icon$$xicon$$yOpenAccess
000434677 8564_ $$uhttps://bib-pubdb1.desy.de/record/434677/files/Coman2019_Article_TodaConformalBlocksQuantumGrou.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000434677 8564_ $$uhttps://bib-pubdb1.desy.de/record/434677/files/Coman2019_Article_TodaConformalBlocksQuantumGrou.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000434677 8564_ $$uhttps://bib-pubdb1.desy.de/record/434677/files/Coman2019_Article_TodaConformalBlocksQuantumGrou.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000434677 8564_ $$uhttps://bib-pubdb1.desy.de/record/434677/files/Coman2019_Article_TodaConformalBlocksQuantumGrou.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000434677 909CO $$ooai:bib-pubdb1.desy.de:434677$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000434677 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1018308$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000434677 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1005175$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000434677 9131_ $$0G:(DE-HGF)POF3-611$$1G:(DE-HGF)POF3-610$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Universum$$vFundamental Particles and Forces$$x0
000434677 9141_ $$y2019
000434677 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000434677 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000434677 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000434677 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN MATH PHYS : 2017
000434677 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000434677 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000434677 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000434677 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000434677 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000434677 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000434677 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000434677 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000434677 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000434677 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000434677 980__ $$ajournal
000434677 980__ $$aVDB
000434677 980__ $$aI:(DE-H253)T-20120731
000434677 980__ $$aUNRESTRICTED
000434677 9801_ $$aFullTexts