000434677 001__ 434677 000434677 005__ 20250729163323.0 000434677 0247_ $$2doi$$a10.1007/s00220-019-03617-y 000434677 0247_ $$2ISSN$$a0010-3616 000434677 0247_ $$2ISSN$$a1432-0916 000434677 0247_ $$2datacite_doi$$a10.3204/PUBDB-2020-00238 000434677 0247_ $$2WOS$$aWOS:000494770400001 000434677 0247_ $$2openalex$$aopenalex:W2983816558 000434677 037__ $$aPUBDB-2020-00238 000434677 041__ $$aEnglish 000434677 082__ $$a510 000434677 1001_ $$0P:(DE-H253)PIP1021430$$aComan-Lohi, Ioana$$b0$$eCorresponding author 000434677 245__ $$aToda Conformal Blocks, Quantum Groups, and Flat Connections 000434677 260__ $$aHeidelberg$$bSpringer$$c2019 000434677 3367_ $$2DRIVER$$aarticle 000434677 3367_ $$2DataCite$$aOutput Types/Journal article 000434677 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1592650326_31497 000434677 3367_ $$2BibTeX$$aARTICLE 000434677 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000434677 3367_ $$00$$2EndNote$$aJournal Article 000434677 500__ $$a© The Author(s) 000434677 520__ $$aThis paper investigates the relations between the Toda conformal field theories,quantum group theory and the quantisation of moduli spaces of flat connections.We use the free field representation of theW-algebras to define natural bases for spacesof conformal blocks of the Toda conformal field theory associated to the Lie algebrasl3 on the three-punctured sphere with representations of generic type associated to thethree punctures. The operator-valued monodromies of degenerate fields can be used todescribe the quantisation of the moduli spaces of flat SL(3)-connections. It is shown thatthe matrix elements of the monodromies can be expressed as Laurent polynomials ofmore elementary operatorswhich have a simple definition in the free field representation.These operators are identified as quantised counterparts of natural higher rank analogsof the Fenchel–Nielsen coordinates from Teichmüller theory. Possible applications tothe study of the non-Lagrangian SUSY field theories are briefly outlined. 000434677 536__ $$0G:(DE-HGF)POF3-611$$a611 - Fundamental Particles and Forces (POF3-611)$$cPOF3-611$$fPOF III$$x0 000434677 588__ $$aDataset connected to CrossRef 000434677 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0 000434677 7001_ $$0P:(DE-H253)PIP1018308$$aPomoni, Elli$$b1 000434677 7001_ $$0P:(DE-H253)PIP1005175$$aTeschner, Jörg$$b2 000434677 773__ $$0PERI:(DE-600)1458931-x$$a10.1007/s00220-019-03617-y$$p-$$tCommunications in mathematical physics$$v-$$x1432-0916$$y2019 000434677 8564_ $$uhttps://bib-pubdb1.desy.de/record/434677/files/Coman2019_Article_TodaConformalBlocksQuantumGrou.pdf$$yOpenAccess 000434677 8564_ $$uhttps://bib-pubdb1.desy.de/record/434677/files/Coman2019_Article_TodaConformalBlocksQuantumGrou.gif?subformat=icon$$xicon$$yOpenAccess 000434677 8564_ $$uhttps://bib-pubdb1.desy.de/record/434677/files/Coman2019_Article_TodaConformalBlocksQuantumGrou.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000434677 8564_ $$uhttps://bib-pubdb1.desy.de/record/434677/files/Coman2019_Article_TodaConformalBlocksQuantumGrou.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000434677 8564_ $$uhttps://bib-pubdb1.desy.de/record/434677/files/Coman2019_Article_TodaConformalBlocksQuantumGrou.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000434677 8564_ $$uhttps://bib-pubdb1.desy.de/record/434677/files/Coman2019_Article_TodaConformalBlocksQuantumGrou.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000434677 909CO $$ooai:bib-pubdb1.desy.de:434677$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000434677 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1018308$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY 000434677 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1005175$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY 000434677 9131_ $$0G:(DE-HGF)POF3-611$$1G:(DE-HGF)POF3-610$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Universum$$vFundamental Particles and Forces$$x0 000434677 9141_ $$y2019 000434677 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000434677 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000434677 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000434677 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN MATH PHYS : 2017 000434677 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000434677 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000434677 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000434677 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000434677 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000434677 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000434677 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000434677 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000434677 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000434677 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0 000434677 980__ $$ajournal 000434677 980__ $$aVDB 000434677 980__ $$aI:(DE-H253)T-20120731 000434677 980__ $$aUNRESTRICTED 000434677 9801_ $$aFullTexts