001     428414
005     20250716154028.0
024 7 _ |a 10.1088/1748-0221/14/09/P09025
|2 doi
024 7 _ |a 10.3204/PUBDB-2019-04565
|2 datacite_doi
024 7 _ |a inspire:1756968
|2 inspire
024 7 _ |a WOS:000498531700008
|2 WOS
024 7 _ |a openalex:W2976252410
|2 openalex
037 _ _ |a PUBDB-2019-04565
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Schwinkendorf, Jan-Patrick
|0 P:(DE-H253)PIP1007333
|b 0
|e Corresponding author
245 _ _ |a Charge calibration of DRZ scintillation phosphor screens
260 _ _ |a London
|c 2019
|b Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1579810405_12112
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (c) IOP Publishing Ltd and Sissa Medialab
520 _ _ |a As a basic diagnostic tool, scintillation screens are employed in particle acceleratorsto detect charged particles. In extension to the recent revision on the calibration of scintillationscreens commonly applied in the context of plasma acceleration [T. Kurz et al.,Rev. Sci. Instrum.89(2018) 093303], here we present the charge calibration of three DRZ screens (Std, Plus, High), whichpromise to offer similar spatial resolution to other screen types whilst reaching higher conversionefficiencies. The calibration was performed at the Electron Linac for beams with high Brilliance andlow Emittance (ELBE) at the Helmholtz-Zentrum Dresden-Rossendorf, which delivers picosecond-long beams of up to 40 MeV energy. Compared to the most sensitive screen, Kodak BioMAX MS,of the aforementioned recent investigation by Kurz et al., the sample with highest yield in thiscampaign, DRZ High, revealed a 30% increase in light yield. The detection threshold with thesescreens was found to be below 10 pC/mm2. For higher charge-densities (several nC/mm2) saturationeffects were observed. In contrast to the recent reported work, the DRZ screens were more robust,demonstrating higher durability under the same high level of charge deposition.
536 _ _ |a 631 - Accelerator R & D (POF3-631)
|0 G:(DE-HGF)POF3-631
|c POF3-631
|f POF III
|x 0
536 _ _ |a PWA - Research group for plasma-based accelerators (PWA-20150304)
|0 G:(DE-H253)PWA-20150304
|c PWA-20150304
|x 1
536 _ _ |0 G:(DE-HGF)2015_IFV-VH-VI-503
|x 2
|c 2015_IFV-VH-VI-503
|a VH-VI-503 - Plasma wakefield acceleration of highly relativistic electrons with FLASH (2015_IFV-VH-VI-503)
588 _ _ |a Dataset connected to CrossRef
693 _ _ |a FLASH
|e FLASHForward
|1 EXP:(DE-H253)FLASH-20150101
|0 EXP:(DE-H253)FLASHForward-20150101
|5 EXP:(DE-H253)FLASHForward-20150101
|x 0
700 1 _ |a Bohlen, S.
|0 P:(DE-H253)PIP1019641
|b 1
700 1 _ |a Couperus Cabadağ, J. P.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ding, H.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Irman, A.
|0 P:(DE-H253)PIP1081480
|b 4
700 1 _ |a Karsch, S.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Köhler, A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Krämer, J. M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kurz, T.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kuschel, S.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Osterhoff, J.
|0 P:(DE-H253)PIP1012785
|b 10
700 1 _ |a Schaper, Lucas
|0 P:(DE-H253)PIP1015071
|b 11
700 1 _ |a Schinkel, D.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Schramm, U.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Zarini, O.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a D'Arcy, R.
|0 P:(DE-H253)PIP1027904
|b 15
|e Corresponding author
773 _ _ |a 10.1088/1748-0221/14/09/P09025
|g Vol. 14, no. 09, p. P09025 - P09025
|0 PERI:(DE-600)2235672-1
|n 09
|p P09025 - P09025
|t Journal of Instrumentation
|v 14
|y 2019
|x 1748-0221
856 4 _ |u https://iopscience.iop.org/article/10.1088/1748-0221/14/09/P09025
856 4 _ |u https://bib-pubdb1.desy.de/record/428414/files/DRZ_paper.pdf
|y Published on 2019-09-27. Available in OpenAccess from 2020-09-27.
|z StatID:(DE-HGF)0510
856 4 _ |u https://bib-pubdb1.desy.de/record/428414/files/Schwinkendorf_2019_J._Inst._14_P09025.pdf
|y Restricted
|z StatID:(DE-HGF)0599
856 4 _ |u https://bib-pubdb1.desy.de/record/428414/files/DRZ_paper.gif?subformat=icon
|x icon
|y Published on 2019-09-27. Available in OpenAccess from 2020-09-27.
|z StatID:(DE-HGF)0510
856 4 _ |u https://bib-pubdb1.desy.de/record/428414/files/DRZ_paper.jpg?subformat=icon-1440
|x icon-1440
|y Published on 2019-09-27. Available in OpenAccess from 2020-09-27.
|z StatID:(DE-HGF)0510
856 4 _ |u https://bib-pubdb1.desy.de/record/428414/files/DRZ_paper.jpg?subformat=icon-180
|x icon-180
|y Published on 2019-09-27. Available in OpenAccess from 2020-09-27.
|z StatID:(DE-HGF)0510
856 4 _ |u https://bib-pubdb1.desy.de/record/428414/files/DRZ_paper.jpg?subformat=icon-640
|x icon-640
|y Published on 2019-09-27. Available in OpenAccess from 2020-09-27.
|z StatID:(DE-HGF)0510
856 4 _ |u https://bib-pubdb1.desy.de/record/428414/files/DRZ_paper.pdf?subformat=pdfa
|x pdfa
|y Published on 2019-09-27. Available in OpenAccess from 2020-09-27.
|z StatID:(DE-HGF)0510
856 4 _ |u https://bib-pubdb1.desy.de/record/428414/files/Schwinkendorf_2019_J._Inst._14_P09025.gif?subformat=icon
|x icon
|y Restricted
|z StatID:(DE-HGF)0599
856 4 _ |u https://bib-pubdb1.desy.de/record/428414/files/Schwinkendorf_2019_J._Inst._14_P09025.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
|z StatID:(DE-HGF)0599
856 4 _ |u https://bib-pubdb1.desy.de/record/428414/files/Schwinkendorf_2019_J._Inst._14_P09025.jpg?subformat=icon-180
|x icon-180
|y Restricted
|z StatID:(DE-HGF)0599
856 4 _ |u https://bib-pubdb1.desy.de/record/428414/files/Schwinkendorf_2019_J._Inst._14_P09025.jpg?subformat=icon-640
|x icon-640
|y Restricted
|z StatID:(DE-HGF)0599
856 4 _ |u https://bib-pubdb1.desy.de/record/428414/files/Schwinkendorf_2019_J._Inst._14_P09025.pdf?subformat=pdfa
|x pdfa
|y Restricted
|z StatID:(DE-HGF)0599
909 C O |o oai:bib-pubdb1.desy.de:428414
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 0
|6 P:(DE-H253)PIP1007333
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1007333
910 1 _ |a FLA
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-H253)PIP1007333
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1019641
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1012785
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1015071
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 15
|6 P:(DE-H253)PIP1027904
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF3-630
|0 G:(DE-HGF)POF3-631
|2 G:(DE-HGF)POF3-600
|v Accelerator R & D
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J INSTRUM : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-H253)FLA-20120731
|k FLA
|l Forschung Linear Accelerator
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FLA-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21