000428236 001__ 428236
000428236 005__ 20250729163130.0
000428236 0247_ $$2doi$$a10.1016/j.electacta.2018.12.073
000428236 0247_ $$2ISSN$$a0013-4686
000428236 0247_ $$2ISSN$$a1873-3859
000428236 0247_ $$2WOS$$aWOS:000456432200006
000428236 0247_ $$2openalex$$aopenalex:W2904145336
000428236 037__ $$aPUBDB-2019-04461
000428236 041__ $$aEnglish
000428236 082__ $$a540
000428236 1001_ $$0P:(DE-H253)PIP1008367$$aDixon, D.$$b0$$eCorresponding author
000428236 245__ $$aSpatially resolved quantification of ruthenium oxide phase in a direct methanol fuel cell operated under normal and fuel starved conditions
000428236 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000428236 3367_ $$2DRIVER$$aarticle
000428236 3367_ $$2DataCite$$aOutput Types/Journal article
000428236 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1579180083_32570
000428236 3367_ $$2BibTeX$$aARTICLE
000428236 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000428236 3367_ $$00$$2EndNote$$aJournal Article
000428236 500__ $$a© Elsevier Ltd. ; Final published version in progress; Post referee fulltext in progress; Embargo 12 months from publication
000428236 520__ $$aIn operando Ru K edge X-ray absorption spectra were recorded at various cell voltages from specific regions of a direct methanol fuel cell (DMFC), such as methanol inlet, outlet and middle regions. From the linear combination fitting analysis, it was found that 50% of the Ru in the pristine Pt/Ru catalyst is in an oxidized form that matches with hydrated ruthenium oxide (RuO2·xH2O). During the DMFC cycling, fraction of this oxide phase gets reduced and forms metallic Ru. Furthermore, it is observed that under normal DMFC operation at various cell voltages relatively a higher amount of RuO2 phase is present at the methanol inlet compared to the methanol outlet. This difference in the amount of RuO2 phase observed translates into inhomogeneous distribution of potential/current within a single cell. The amount of RuO2 phase increased further when the DMFC was subjected to fuel starvation conditions (very high anode potential). Again compared to the methanol outlet region, a higher amount of RuO2 phase was found at the methanol inlet. As RuO2 is more prone to dissolution compared to metallic Ru, it can be concluded that methanol inlet region is more prone to Ru dissolution compared to methanol outlet region.
000428236 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x0
000428236 588__ $$aDataset connected to CrossRef
000428236 693__ $$0EXP:(DE-H253)D-X1-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-X1-20150101$$aDORIS III$$fDORIS Beamline X1$$x0
000428236 7001_ $$0P:(DE-H253)PIP1008105$$aSchoekel, A.$$b1$$udesy
000428236 7001_ $$0P:(DE-H253)PIP1008104$$aRoth, C.$$b2
000428236 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2018.12.073$$gVol. 298, p. 52 - 58$$p52 - 58$$tElectrochimica acta$$v298$$x0013-4686$$y2019
000428236 909CO $$ooai:bib-pubdb1.desy.de:428236$$pVDB
000428236 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008367$$aExternal Institute$$b0$$kExtern
000428236 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1008105$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000428236 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008105$$aExternal Institute$$b1$$kExtern
000428236 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008104$$aExternal Institute$$b2$$kExtern
000428236 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000428236 9141_ $$y2019
000428236 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000428236 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000428236 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2017
000428236 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELECTROCHIM ACTA : 2017
000428236 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000428236 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000428236 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000428236 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000428236 915__ $$0StatID:(DE-HGF)0551$$2StatID$$aNo Fulltext
000428236 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000428236 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000428236 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000428236 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000428236 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000428236 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000428236 9201_ $$0I:(DE-H253)FS-PET-D-20190712$$kFS-PET-D$$lExperimentebetreuung PETRA III$$x1
000428236 980__ $$ajournal
000428236 980__ $$aVDB
000428236 980__ $$aUNRESTRICTED
000428236 980__ $$aI:(DE-H253)HAS-User-20120731
000428236 980__ $$aI:(DE-H253)FS-PET-D-20190712