000426018 001__ 426018
000426018 005__ 20250729162955.0
000426018 0247_ $$2doi$$a10.1021/acs.jpcc.8b11065
000426018 0247_ $$2ISSN$$a1932-7447
000426018 0247_ $$2ISSN$$a1932-7455
000426018 0247_ $$2datacite_doi$$a10.3204/PUBDB-2019-03552
000426018 0247_ $$2WOS$$aWOS:000460996000031
000426018 0247_ $$2openalex$$aopenalex:W2913617204
000426018 037__ $$aPUBDB-2019-03552
000426018 041__ $$aEnglish
000426018 082__ $$a530
000426018 1001_ $$0P:(DE-H253)PIP1020804$$aOgel, E.$$b0
000426018 245__ $$aImpact of Preparation Method and Hydrothermal Aging on Particle Size Distribution of $Pt/γ-Al_{2}O_{3}$ and Its Performance in CO and NO Oxidation
000426018 260__ $$aWashington, DC$$bSoc.10927$$c2019
000426018 3367_ $$2DRIVER$$aarticle
000426018 3367_ $$2DataCite$$aOutput Types/Journal article
000426018 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573236017_4843
000426018 3367_ $$2BibTeX$$aARTICLE
000426018 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000426018 3367_ $$00$$2EndNote$$aJournal Article
000426018 500__ $$a© American Chemical Society
000426018 520__ $$aThe influence of the preparation method and the corresponding particle size distribution on hydrothermal deactivation behavior at 600-800°C and its performance during CO/NO oxida-tion was systematically investigated for a series of Pt/Al2O3 catalysts. Representative conven-tional (incipient wetness impregnation) and advanced preparation methods (flame spray pyrol-ysis, supercritical fluid reactive deposition and laser ablation in liquid) were selected, which generated samples containing narrow and homogeneous but also heterogeneous particle size distributions. Basic characterization was conducted by inductively coupled plasma-optical emission spectrometry, N2 physisorption and X-ray diffraction.  The particle size distribution and the corresponding oxidation state was analyzed using transmission electron microscopy and X-ray absorption spectroscopy. The systematic study shows that oxidized Pt nanoparticles smaller than 2 nm sinter very fast, already at 600°C, but potential chlorine traces from the cat-alyst precursor seem to stabilize Pt nanoparticles against further sintering and consequently maintain the catalytic performance. Samples prepared by flame spray pyrolysis and laser abla-tion showed a superior hydrothermal resistance of the alumina support, although, due to small inter-particle distance in case of laser synthesized particles, the particle size distribution in-creases considerably at high temperatures. Significant deceleration of the noble metal sintering process was obtained for the catalysts containing homogeneously distributed but slightly larg-er Pt nanoparticles (supercritical fluid reactive deposition) or for particles deposited on a ther-mally stable alumina support (flame spray pyrolysis). The correlations obtained between Pt particle size distribution, oxidation state and catalytic performance indicate different trends for CO and NO oxidation reactions, in line with structure sensitivity.
000426018 536__ $$0G:(DE-HGF)POF3-6G3$$a6G3 - PETRA III (POF3-622)$$cPOF3-622$$fPOF III$$x0
000426018 588__ $$aDataset connected to CrossRef
000426018 693__ $$0EXP:(DE-H253)P-P64-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P64-20150101$$aPETRA III$$fPETRA Beamline P64$$x0
000426018 7001_ $$0P:(DE-H253)PIP1009506$$aCasapu, M.$$b1
000426018 7001_ $$aDoronkin, D. E.$$b2
000426018 7001_ $$0P:(DE-HGF)0$$aPopescu, R.$$b3
000426018 7001_ $$0P:(DE-HGF)0$$aStörmer, H.$$b4
000426018 7001_ $$aMechler, C.$$b5
000426018 7001_ $$aMarzun, G.$$b6
000426018 7001_ $$00000-0002-9739-7272$$aBarcikowski, S.$$b7
000426018 7001_ $$aTürk, M.$$b8
000426018 7001_ $$0P:(DE-H253)PIP1008522$$aGrunwaldt, Jan-Dierk$$b9$$eCorresponding author
000426018 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.8b11065$$gVol. 123, no. 9, p. 5433 - 5446$$n9$$p5433 - 5446$$tThe journal of physical chemistry <Washington, DC> / C C, Nanomaterials and interfaces$$v123$$x1932-7455$$y2019
000426018 8564_ $$uhttps://bib-pubdb1.desy.de/record/426018/files/acs.jpcc.8b11065.pdf$$yRestricted
000426018 8564_ $$uhttps://bib-pubdb1.desy.de/record/426018/files/2nd%20Paper%20EO_Final_revision_2.pdf$$yPublished on 2019-01-28. Available in OpenAccess from 2020-01-28.
000426018 8564_ $$uhttps://bib-pubdb1.desy.de/record/426018/files/acs.jpcc.8b11065.gif?subformat=icon$$xicon$$yRestricted
000426018 8564_ $$uhttps://bib-pubdb1.desy.de/record/426018/files/acs.jpcc.8b11065.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000426018 8564_ $$uhttps://bib-pubdb1.desy.de/record/426018/files/acs.jpcc.8b11065.jpg?subformat=icon-180$$xicon-180$$yRestricted
000426018 8564_ $$uhttps://bib-pubdb1.desy.de/record/426018/files/acs.jpcc.8b11065.jpg?subformat=icon-640$$xicon-640$$yRestricted
000426018 8564_ $$uhttps://bib-pubdb1.desy.de/record/426018/files/acs.jpcc.8b11065.pdf?subformat=pdfa$$xpdfa$$yRestricted
000426018 8564_ $$uhttps://bib-pubdb1.desy.de/record/426018/files/2nd%20Paper%20EO_Final_revision_2.gif?subformat=icon$$xicon$$yPublished on 2019-01-28. Available in OpenAccess from 2020-01-28.
000426018 8564_ $$uhttps://bib-pubdb1.desy.de/record/426018/files/2nd%20Paper%20EO_Final_revision_2.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2019-01-28. Available in OpenAccess from 2020-01-28.
000426018 8564_ $$uhttps://bib-pubdb1.desy.de/record/426018/files/2nd%20Paper%20EO_Final_revision_2.jpg?subformat=icon-180$$xicon-180$$yPublished on 2019-01-28. Available in OpenAccess from 2020-01-28.
000426018 8564_ $$uhttps://bib-pubdb1.desy.de/record/426018/files/2nd%20Paper%20EO_Final_revision_2.jpg?subformat=icon-640$$xicon-640$$yPublished on 2019-01-28. Available in OpenAccess from 2020-01-28.
000426018 8564_ $$uhttps://bib-pubdb1.desy.de/record/426018/files/2nd%20Paper%20EO_Final_revision_2.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-01-28. Available in OpenAccess from 2020-01-28.
000426018 909CO $$ooai:bib-pubdb1.desy.de:426018$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000426018 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1020804$$aExternal Institute$$b0$$kExtern
000426018 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1009506$$aExternal Institute$$b1$$kExtern
000426018 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a KIT$$b3
000426018 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a KIT$$b4
000426018 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008522$$aExternal Institute$$b9$$kExtern
000426018 9131_ $$0G:(DE-HGF)POF3-622$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G3$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Research on Matter with Brilliant Light Sources$$x0
000426018 9141_ $$y2019
000426018 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000426018 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000426018 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2017
000426018 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000426018 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000426018 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000426018 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000426018 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000426018 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000426018 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000426018 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR$$lDOOR-User$$x0
000426018 980__ $$ajournal
000426018 980__ $$aVDB
000426018 980__ $$aI:(DE-H253)HAS-User-20120731
000426018 980__ $$aUNRESTRICTED
000426018 9801_ $$aFullTexts